Propriedades da geometria plana verificadas no GeoGebra Discovery
DOI:
https://doi.org/10.23925/2238-8044.2022v11i1p30-41Keywords:
GeoGebra Discovery, Geometria, Demonstração e ProvaAbstract
This paper presents partial results of a PhD research in Mathematics Education, inserted in the context of demonstrations and tests in dynamic environments. With the feasibility of a version of GeoGebra software it is feasible to check properties of plane geometry. Activities were developed in Teams, enabling the sharing of software, the researcher's computer, with the participants, 8th grade students. Based on the Design Experiments methodology, the analyses were carried out in the light of the development of Van Hiele's geometric thinking (1984). This text presents the development of one of the activities performed by one of the participants and the results, evidenced contributions to learning and allowed students to explore, create their own conjectures in GeoGebra and receive a return on them.
References
ABAR, C. A. A. P.; COTIC, N. S. GeoGebra: na produção do conhecimento matemático. 1. ed. São Paulo: Iglu Editora Ltda, 2014.
BALACHEFF, N. Aspects of proofs in pupil´s practice of school mathematics. In: D. Pimm (Ed.) Mathematics Teachers and Children. London: Hodger and Stoughton. 1988.
BOTANA, F. et al. Hacia un autómata geómetra por. La Columna de Matemática Computacional, v. 23, p. 343–371, 2020.
COLLINS, A.; JOSEPH, D.; BIELACZYC, K. Design Research: Theoretical and Methodological Issues. Journal of the Learning Sciences, v. 13, n. 1, p. 15–42, jan. 2004.
HANNA, G. Proof, Explanation and Exploration: an Overview. In: JONES, K.; GUTIÉRREZ, Á.; MARIOTTI, M. A. (Eds.). . Educational Studies in Mathematics. [s.l.] Springer Nature, 2000. v. 44p. 5–23.
HANNA, G. Beyond verification : Proof can teach new methods. ICMI Symposium Rome 2008. Anais...Rome: 2008. Disponível em: <http://www.unige.ch/math/EnsMath/Rome2008/ALL/Papers/HANNA.pdf>. Acesso em: 20 jul. 2020
HANNA, G.; VILLIERS, M. DE. Proof and Proving in Mathematics Education. Dordrecht: Springer Netherlands, 2012. v. 15
HOHENWARTER, M.; KOVÁCS, Z.; RECIO, T.. Determinando propriedades geométricas simbolicamente com GeoGebra. Números: Revista de Didáctica de las Matemáticas, La Laguna (tenerife). España, v. 100, p.79-84, maio 2019. Quadrimestral. Disponível em: <http://www.sinewton.org/numeros>. Acesso em: 14 dez. 2019.
HOYLES, C. The Curricular Shaping of Students' Approaches to Proof. For the Learning of Mathematics, 17(1), 7-16, 1997.
MANSON, N. Is operations research really research? Orion, v. 22, n. 2, p. 155–180, 2006.
OLIVERO, F. The proving process within a dynamic geometry environment. Unpublished PhD thesis, Bristol: University of Bristol, 2002.
PIAGET J. , GARCIA R. Psicogénese e História das Ciências. Editora: Vozes. 2011.
SIMON, H. A. The Sciences of the Artificial. 3. ed. [s.l.] MIT Press, 1996. v. 11
VAN HIELE, P. M. The Child’s Thought and Geometry. In: Classics in Mathematics Education Research English Translation of Selected Writings of Dina Van Hiele-Geldolf and Pierre M. van Hiele. p. 243–252. New York. 1984. (Trabalho original publicado em 1959.)
VILLIERS, M. DE. The Role of Proof in Investigative, Computer-based Geometry: Some personal reflections. In: JAMES R. KING, D. S. (Ed.). . Geometry Tuerned! Dynamic Software in Learnig, Teaching, and Research. Washington: The Mathematical Assiation of America, 1997. p. 15–24.
VILLIERS, M. D. DE. Papel e funções da demonstração no trabalho com o Sketchpad. Educação Matemática, n. 62, p. 31-36, mar/abr. 2001. Disponível em: <http://www.apm.pt/apm/revista/educ63/Para-este-numero.pdf>. Acesso em: 19 dez. 2020.
VILLIERS, M. DE. Using dynamic geometry to expand mathematics teachers’ understanding of proof. International Journal of Mathematical Education in Science and Technology, v. 35, n. 5, p. 703–724, set. 2004.