Technological routes for the wind power generation in Brazil
a feasibility study for the state of Ceará
DOI:
https://doi.org/10.23925/2179-3565.2023v14i1p113-128Keywords:
Renewable Energy, Wind energy, Public Policy, Feasibility Study, BrazilAbstract
Most of the electricity generated in Brazil still comes from hydroelectric plants. In 2021, the country reached a critical hydrological scenario due to low capacities in the reservoirs. Although the installed wind power capacity in Brazil has expanded considerably in recent years, wind generation in the country is limited to the onshore type. This study aims to evaluate the feasibility of a new wind farm to be installed in Brazil, comparing several possible conditions and technologies, for installing a wind farm on a predetermined location in the northeast region of the country, the most promising region for wind farms. Based on the literature review, different technology routes that characterize wind farms around the world were identified and, through expert evaluation, the best technology route in terms of cost-effectiveness was defined. The results show that, under current conditions, the onshore route with higher unit power of the wind turbine and tubular tower proved to be the preferred one. However, it was shown that in the medium term, offshore wind energy shall become a reality in the country, as long as favorable regulations and licensing models, political and economic stability, and long-term public policies in terms of incentives and subsidies to attract investments for this type of energy generation are present.
References
ABDI. (2017). Atualização do Mapeamento da Cadeia Produtiva da Indústria Eólica no Brasil. Agência Brasileira de Desenvolvimento Industrial. http://inteligencia.abdi.com.br/wp-content/uploads/2017/08/2018-08-07_ABDI_relatorio_6-1_atualizacao-do-mapeamento-da-cadeia-produtiva-da-industria-eolica-no-brasil-WEB.pdf
ABEEOLICA. (2021). Boletim Anual de Geração 2020 (p. 20). Associação Brasileira de Energia Eólica. file:///C:/Users/ramos/Downloads/PT_Boletim-Anual-de-Geracao_2020.pdf
ADECE. (2019). Atlas Eólico e Solar: Ceará. (p. 196). Agência de Desenvolvimento do Estado do Ceará. http://atlas.adece.ce.gov.br/User?ReturnUrl=%2F
ANEEL. (2021). SIGA - Sistema de Informações de Geração da ANEEL - Dados Abertos—Agência Nacional de Energia Elétrica. SIGA - Sistema de Informações de Geração da ANEEL. https://dadosabertos.aneel.gov.br/dataset/siga-sistema-de-informacoes-de-geracao-da-aneel
Ariola Mbistrova & Aloys Nghiem. (2017). The value of hedging—New approaches to managing wind energy resource risk (p. 38). WindEurope. https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-SwissRe-the-value-of-hedging.pdf
Ashwill, T., Sutherland, H., & Berg, D. (2012). A retrospective of VAWT technology. (No. SAND2012-0304, 1035336; pp. SAND2012-0304, 1035336). https://doi.org/10.2172/1035336
AWEO. (2021). Area Used by Wind Power Facilities. Area Used by Wind Power Facilities. http://www.aweo.org/windarea.html
Ayodele, T. R., Jimoh, A. A., Munda, J. L., & Agee, J. T. (2014). Viability and economic analysis of wind energy resource for power generation in Johannesburg, South Africa. International Journal of Sustainable Energy, 33(2), 284–303. https://doi.org/10.1080/14786451.2012.762777
Bailey, B. H., McDonald, S. L., Bernadett, D. W., Markus, M. J., & Elsholz, K. V. (1997). Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program (NREL/SR--440-22223, ON: DE97000250, 486127; p. NREL/SR--440-22223, ON: DE97000250, 486127). https://doi.org/10.2172/486127
Bortolini, M., Gamberi, M., Graziani, A., Manzini, R., & Pilati, F. (2014). Performance and viability analysis of small wind turbines in the European Union. Renewable Energy, 62, 629–639. https://doi.org/10.1016/j.renene.2013.08.004
Brannstrom, C., Gorayeb, A., de Sousa Mendes, J., Loureiro, C., Meireles, A. J. de A., Silva, E. V. da, Freitas, A. L. R. de, & Oliveira, R. F. de. (2017). Is Brazilian wind power development sustainable? Insights from a review of conflicts in Ceará state. Renewable and Sustainable Energy Reviews, 67, 62–71. https://doi.org/10.1016/j.rser.2016.08.047
Brasil. (2020). Programa de Estímulo ao Transporte por Cabotagem—BR do Mar. Ministério da Infraestrutura. https://www.gov.br/infraestrutura/pt-br/brdomar/capa
Brasil, Medida Provisória no 1.055, de 28 de junho de 2021, Diário Oficial da União 1 (2021). https://www.gov.br/prf/pt-br/concurso-2021/resolucoes/R210-06
Brown, C., Poudineh, R., & Foley, B. (2015). Achieving a cost-competitive offshore wind power industry: What is the most effective policy framework? Oxford Institute for Energy Studies. https://doi.org/10.26889/9781784670375
Canal Energia. (2020). Safra dos ventos deve suportar a crise hídrica, preveem especialistas. https://canalenergia.com.br/noticias/53181632/safra-dos-ventos-deve-suportar-a-crise-hidrica-preveem-especialistas
Climainfo. (2021, June 24). Crise hídrica abre oportunidade para fontes renováveis de energia. ClimaInfo. https://climainfo.org.br/2021/06/24/crise-hidrica-abre-oportunidade-para-fontes-renovaveis-de-energia/
COPEL. (2021). Copel amplia uso de drones para inspeção de redes de energia. https://www.canalenergia.com.br/noticias/53183567/copel-amplia-uso-de-drones-para-inspecao-de-redes-de-energia
Custódio, R. dos S., Rousseff, D., & Melo, E. (2013). Energia eólica para produção de energia elétrica (2a edição). Synergia Editora.
Effiom, S. O., Nwankwojike, B. N., & Abam, F. I. (2016). Economic cost evaluation on the viability of offshore wind turbine farms in Nigeria. Energy Reports, 2, 48–53. https://doi.org/10.1016/j.egyr.2016.03.001
EPE. (2020). Roadmap Eólica Offshore Brasil – Perspectivas e caminhos para a energia eólica marítima (p. 140). Empresa de Pesquisa Energética. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-456/Roadmap_Eolica_Offshore_EPE_versao_R2.pdf
EPE. (2021). Relatório Síntese do Balanço Energético Nacional 2021. (p. 268). Empresa de Pesquisa Energética. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-596/BEN2021.pdf
GWEC. (2021). Global Wind Energy Report 2021 (p. 80). Global Wind Energy Council. https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf
Hunt., J. D., Stilpen, D., & de Freitas, M. A. V. (2018). A review of the causes, impacts and solutions for electricity supply crises in Brazil. Renewable and Sustainable Energy Reviews, 88, 208–222. https://doi.org/10.1016/j.rser.2018.02.030
IBERDROLA. (2021). Apostamos no uso de drones para a inspeção de parques eólicos. Iberdrola. https://www.iberdrola.com/inovacao/drones-parques-eolicos
IBGE. (2021). Áreas Territoriais | IBGE. Instituto Brasileiro de Geografia e Estatística. https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-municipios.html?=&t=acesso-ao-produto
IEA. (2020). World energy balances 2020 edition. International Energy Agency. https://iea.blob.core.windows.net/assets/4f314df4-8c60-4e48-9f36-bfea3d2b7fd5/WorldBAL_2020_Documentation.pdf
IRENA. (2016). The power to change: Solar and wind cost reduction potential to 2025. (p. 180). International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf
IRENA. (2020). Renewable Power Generation Costs in 2020. International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf
Junqueira, H., Robaina, M., Garrido, S., Godina, R., & Matias, J. C. O. (2020). Viability of Creating an Offshore Wind Energy Cluster: A Case Study. Applied Sciences, 11(1), 308. https://doi.org/10.3390/app11010308
Kaldellis, J. K., & Gavras, T. J. (2000). The economic viability of commercial wind plants in Greece A complete sensitivity analysis. Energy Policy.
Köberle, A. C., Garaffa, R., Cunha, B. S. L., Rochedo, P., Lucena, A. F. P., Szklo, A., & Schaeffer, R. (2018). Are conventional energy megaprojects competitive? Suboptimal decisions related to cost overruns in Brazil. Energy Policy, 122, 689–700. https://doi.org/10.1016/j.enpol.2018.08.021
Laudari, R., Sapkota, B. K., & Banskota, K. (2015). Assessment of Economic Viability of Wind Energy in Nepal: A Case Study of Ten Sites.
Li, Z., Boyle, F., & Reynolds, A. (2012). Domestic application of micro wind turbines in Ireland: Investigation of their economic viability. Renewable Energy, 41, 64–74. https://doi.org/10.1016/j.renene.2011.10.001
Lourenço, A. D. prazeres, Santos, J. O., Sousa, J. C. de, & Rodrigues, L. D. L. (2020). O Método de Ponderação de Fatores como Critério de Localização Industrial / The Factor Weighting Method as an Industrial Location Criterion. ID on line REVISTA DE PSICOLOGIA, 14(49), 504–517. https://doi.org/10.14295/idonline.v14i49.2361
Martins, F. R., & Pereira, E. B. (2011). Enhancing information for solar and wind energy technology deployment in Brazil. Energy Policy, 39(7), 4378–4390. https://doi.org/10.1016/j.enpol.2011.04.058
Menendez, M., Tomas, A., Camus, P., Garcia-Diez, M., Fita, L., Fernandez, J., Mendez, F. J., & Losada, I. J. (2011). A methodology to evaluate regional-scale offshore wind energy resources. OCEANS 2011 IEEE - Spain, 1–8. https://doi.org/10.1109/Oceans-Spain.2011.6003595
MME. (2021). Escassez Hídrica e o Fornecimento de Energia Elétrica no Brasil. (p. 11). Ministério de Minas e Energia. https://www.epe.gov.br/sites-pt/sala-de-imprensa/noticias/Documents/infogr%c3%a1fico.pdf
Musial, W. (2007). Offshore Wind Electricity: A Viable Energy Option for the Coastal United States. Marine Technology Society Journal, 41(3), 32–43. https://doi.org/10.4031/002533207787442088
O Globo. (2021). Com crise hídrica, oferta de energia eólica pode dobrar em poucos meses—Jornal O Globo. O GLOBO ECONOMIA. https://oglobo.globo.com/economia/com-crise-hidrica-oferta-de-energia-eolica-pode-dobrar-em-poucos-meses-25069506
O’Keeffe, A., & Haggett, C. (2012). An investigation into the potential barriers facing the development of offshore wind energy in Scotland: Case study – Firth of Forth offshore wind farm. Renewable and Sustainable Energy Reviews, 16(6), 3711–3721. https://doi.org/10.1016/j.rser.2012.03.018
Prefeitura de Caucaia. (2021). Prefeitura de Caucaia. Dados do município. https://www.caucaia.ce.gov.br/omunicipio.php
Ramos Júnior, M. J., & Almeida, E. dos S. (2021). Destinação de pás de turbinas eólicas instaladas no Estado da Bahia, Brasil. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 8(19), 979–992. https://doi.org/10.21438/rbgas(2021)081924
Ramos Júnior, M. J., Figueiredo, P. S., & Travassos, X. L. (2022). Barriers and perspectives for the expansion of wind farms in BRAZIL. Renewable Energy and Environmental Sustainability, 7, 6. https://doi.org/10.1051/rees/2021055
Rocha, M., & Figueiredo, P. S. (2017). Rotas tecnológicas para a produção de ferrocromo no Brasil: Um estudo de viabilidade técnica, econômica e financeira. Tecnologia em Metalurgia Materiais e Mineração, 14(2), 159–166. https://doi.org/10.4322/2176-1523.1172
Samu, R., Fahrioglu, M., & Ozansoy, C. (2019). The potential and economic viability of wind farms in Zimbabwe. International Journal of Green Energy, 16(15), 1539–1546. https://doi.org/10.1080/15435075.2019.1671424
TAESA. (2021). Projeto 0059 – Inspeção Semiautônoma com Drone em Torres de Linha de Transmissão | Taesa. https://institucional.taesa.com.br/pesquisa/projeto-0059-inspecao-semiautonoma-com-drone-em-torres-de-linha-de-transmissao/
Venkatesh, R. (2002). Power quality issues and grid interfacing of wind electric generators. Indian Journal of Power and River Valley Development, 52(9), 215–220.
Viana, L. A., Nascimento, J. L. J. do, & Meireles, A. J. de A. (2016). Complexos eólicos e injustiças ambientais: Mapeamento participativo e visibilização dos conclitos provocados pela iplantação de parques eólicos no Ceará. REVISTA GEOGRAFAR, 11(1), 64. https://doi.org/10.5380/geografar.v11i1.48978
Walters, R., & Walsh, P. R. (2011). Examining the financial performance of micro-generation wind projects and the subsidy effect of feed-in tariffs for urban locations in the United Kingdom. Energy Policy, 39(9), 5167–5181. https://doi.org/10.1016/j.enpol.2011.05.047
Downloads
Published
Issue
Section
License
This Journal is licensed under a Creative Commons Attribution-Non Commercial-No Derivers 4.0 International license.
1.The author (s) authorize the publication of the article in the journal;
2.The author (s) warrant that the contribution is original and unpublished and is not in the process of being evaluated in other journal (s);
3. The journal is not responsible for the opinions, ideas and concepts emitted in the texts, as they are the sole responsibility of its author (s);
4. The editors are entitled to make textual adjustments and to adapt the articles to the standards of publication.