Technological routes for the wind power generation in Brazil

a feasibility study for the state of Ceará

Autores/as

DOI:

https://doi.org/10.23925/2179-3565.2023v14i1p113-128

Palabras clave:

Renewable Energy, Wind energy, Public Policy, Feasibility Study, Brazil

Resumen

 Most of the electricity generated in Brazil still comes from hydroelectric plants. In 2021, the country reached a critical hydrological scenario due to low capacities in the reservoirs. Although the installed wind power capacity in Brazil has expanded considerably in recent years, wind generation in the country is limited to the onshore type.  This study aims to evaluate the feasibility of a new wind farm to be installed in Brazil, comparing several possible conditions and technologies, for installing a wind farm on a predetermined location in the northeast region of the country, the most promising region for wind farms. Based on the literature review, different technology routes that characterize wind farms around the world were identified and, through expert evaluation, the best technology route in terms of cost-effectiveness was defined. The results show that, under current conditions, the onshore route with higher unit power of the wind turbine and tubular tower proved to be the preferred one. However, it was shown that in the medium term, offshore wind energy shall become a reality in the country, as long as favorable regulations and licensing models, political and economic stability, and long-term public policies in terms of incentives and subsidies to attract investments for this type of energy generation are present.

Biografía del autor/a

Mário Joel Ramos Júnior, Serviço Nacional de Aprendizagem Industrial, Centro Integrado de Manufatura e Tecnologia

Master in Industrial management and Technology, Senai Cimatec.

Paulo Soares Figueiredo, Serviço Nacional de Aprendizagem Industrial, Centro Integrado de Manufatura e Tecnologia, Universidade Federal da Bahia

Professor, Operations Management department, UFBA School of Management.

Xisto Lucas Travassos, Universidade Federal de Santa Catarina

Professor Adjunto da Universidade Federal de Santa Catarina, Centro de Engenharias da Mobilidade

Citas

ABDI. (2017). Atualização do Mapeamento da Cadeia Produtiva da Indústria Eólica no Brasil. Agência Brasileira de Desenvolvimento Industrial. http://inteligencia.abdi.com.br/wp-content/uploads/2017/08/2018-08-07_ABDI_relatorio_6-1_atualizacao-do-mapeamento-da-cadeia-produtiva-da-industria-eolica-no-brasil-WEB.pdf

ABEEOLICA. (2021). Boletim Anual de Geração 2020 (p. 20). Associação Brasileira de Energia Eólica. file:///C:/Users/ramos/Downloads/PT_Boletim-Anual-de-Geracao_2020.pdf

ADECE. (2019). Atlas Eólico e Solar: Ceará. (p. 196). Agência de Desenvolvimento do Estado do Ceará. http://atlas.adece.ce.gov.br/User?ReturnUrl=%2F

ANEEL. (2021). SIGA - Sistema de Informações de Geração da ANEEL - Dados Abertos—Agência Nacional de Energia Elétrica. SIGA - Sistema de Informações de Geração da ANEEL. https://dadosabertos.aneel.gov.br/dataset/siga-sistema-de-informacoes-de-geracao-da-aneel

Ariola Mbistrova & Aloys Nghiem. (2017). The value of hedging—New approaches to managing wind energy resource risk (p. 38). WindEurope. https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-SwissRe-the-value-of-hedging.pdf

Ashwill, T., Sutherland, H., & Berg, D. (2012). A retrospective of VAWT technology. (No. SAND2012-0304, 1035336; pp. SAND2012-0304, 1035336). https://doi.org/10.2172/1035336

AWEO. (2021). Area Used by Wind Power Facilities. Area Used by Wind Power Facilities. http://www.aweo.org/windarea.html

Ayodele, T. R., Jimoh, A. A., Munda, J. L., & Agee, J. T. (2014). Viability and economic analysis of wind energy resource for power generation in Johannesburg, South Africa. International Journal of Sustainable Energy, 33(2), 284–303. https://doi.org/10.1080/14786451.2012.762777

Bailey, B. H., McDonald, S. L., Bernadett, D. W., Markus, M. J., & Elsholz, K. V. (1997). Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program (NREL/SR--440-22223, ON: DE97000250, 486127; p. NREL/SR--440-22223, ON: DE97000250, 486127). https://doi.org/10.2172/486127

Bortolini, M., Gamberi, M., Graziani, A., Manzini, R., & Pilati, F. (2014). Performance and viability analysis of small wind turbines in the European Union. Renewable Energy, 62, 629–639. https://doi.org/10.1016/j.renene.2013.08.004

Brannstrom, C., Gorayeb, A., de Sousa Mendes, J., Loureiro, C., Meireles, A. J. de A., Silva, E. V. da, Freitas, A. L. R. de, & Oliveira, R. F. de. (2017). Is Brazilian wind power development sustainable? Insights from a review of conflicts in Ceará state. Renewable and Sustainable Energy Reviews, 67, 62–71. https://doi.org/10.1016/j.rser.2016.08.047

Brasil. (2020). Programa de Estímulo ao Transporte por Cabotagem—BR do Mar. Ministério da Infraestrutura. https://www.gov.br/infraestrutura/pt-br/brdomar/capa

Brasil, Medida Provisória no 1.055, de 28 de junho de 2021, Diário Oficial da União 1 (2021). https://www.gov.br/prf/pt-br/concurso-2021/resolucoes/R210-06

Brown, C., Poudineh, R., & Foley, B. (2015). Achieving a cost-competitive offshore wind power industry: What is the most effective policy framework? Oxford Institute for Energy Studies. https://doi.org/10.26889/9781784670375

Canal Energia. (2020). Safra dos ventos deve suportar a crise hídrica, preveem especialistas. https://canalenergia.com.br/noticias/53181632/safra-dos-ventos-deve-suportar-a-crise-hidrica-preveem-especialistas

Climainfo. (2021, June 24). Crise hídrica abre oportunidade para fontes renováveis de energia. ClimaInfo. https://climainfo.org.br/2021/06/24/crise-hidrica-abre-oportunidade-para-fontes-renovaveis-de-energia/

COPEL. (2021). Copel amplia uso de drones para inspeção de redes de energia. https://www.canalenergia.com.br/noticias/53183567/copel-amplia-uso-de-drones-para-inspecao-de-redes-de-energia

Custódio, R. dos S., Rousseff, D., & Melo, E. (2013). Energia eólica para produção de energia elétrica (2a edição). Synergia Editora.

Effiom, S. O., Nwankwojike, B. N., & Abam, F. I. (2016). Economic cost evaluation on the viability of offshore wind turbine farms in Nigeria. Energy Reports, 2, 48–53. https://doi.org/10.1016/j.egyr.2016.03.001

EPE. (2020). Roadmap Eólica Offshore Brasil – Perspectivas e caminhos para a energia eólica marítima (p. 140). Empresa de Pesquisa Energética. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-456/Roadmap_Eolica_Offshore_EPE_versao_R2.pdf

EPE. (2021). Relatório Síntese do Balanço Energético Nacional 2021. (p. 268). Empresa de Pesquisa Energética. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-596/BEN2021.pdf

GWEC. (2021). Global Wind Energy Report 2021 (p. 80). Global Wind Energy Council. https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf

Hunt., J. D., Stilpen, D., & de Freitas, M. A. V. (2018). A review of the causes, impacts and solutions for electricity supply crises in Brazil. Renewable and Sustainable Energy Reviews, 88, 208–222. https://doi.org/10.1016/j.rser.2018.02.030

IBERDROLA. (2021). Apostamos no uso de drones para a inspeção de parques eólicos. Iberdrola. https://www.iberdrola.com/inovacao/drones-parques-eolicos

IBGE. (2021). Áreas Territoriais | IBGE. Instituto Brasileiro de Geografia e Estatística. https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-municipios.html?=&t=acesso-ao-produto

IEA. (2020). World energy balances 2020 edition. International Energy Agency. https://iea.blob.core.windows.net/assets/4f314df4-8c60-4e48-9f36-bfea3d2b7fd5/WorldBAL_2020_Documentation.pdf

IRENA. (2016). The power to change: Solar and wind cost reduction potential to 2025. (p. 180). International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf

IRENA. (2020). Renewable Power Generation Costs in 2020. International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf

Junqueira, H., Robaina, M., Garrido, S., Godina, R., & Matias, J. C. O. (2020). Viability of Creating an Offshore Wind Energy Cluster: A Case Study. Applied Sciences, 11(1), 308. https://doi.org/10.3390/app11010308

Kaldellis, J. K., & Gavras, T. J. (2000). The economic viability of commercial wind plants in Greece A complete sensitivity analysis. Energy Policy.

Köberle, A. C., Garaffa, R., Cunha, B. S. L., Rochedo, P., Lucena, A. F. P., Szklo, A., & Schaeffer, R. (2018). Are conventional energy megaprojects competitive? Suboptimal decisions related to cost overruns in Brazil. Energy Policy, 122, 689–700. https://doi.org/10.1016/j.enpol.2018.08.021

Laudari, R., Sapkota, B. K., & Banskota, K. (2015). Assessment of Economic Viability of Wind Energy in Nepal: A Case Study of Ten Sites.

Li, Z., Boyle, F., & Reynolds, A. (2012). Domestic application of micro wind turbines in Ireland: Investigation of their economic viability. Renewable Energy, 41, 64–74. https://doi.org/10.1016/j.renene.2011.10.001

Lourenço, A. D. prazeres, Santos, J. O., Sousa, J. C. de, & Rodrigues, L. D. L. (2020). O Método de Ponderação de Fatores como Critério de Localização Industrial / The Factor Weighting Method as an Industrial Location Criterion. ID on line REVISTA DE PSICOLOGIA, 14(49), 504–517. https://doi.org/10.14295/idonline.v14i49.2361

Martins, F. R., & Pereira, E. B. (2011). Enhancing information for solar and wind energy technology deployment in Brazil. Energy Policy, 39(7), 4378–4390. https://doi.org/10.1016/j.enpol.2011.04.058

Menendez, M., Tomas, A., Camus, P., Garcia-Diez, M., Fita, L., Fernandez, J., Mendez, F. J., & Losada, I. J. (2011). A methodology to evaluate regional-scale offshore wind energy resources. OCEANS 2011 IEEE - Spain, 1–8. https://doi.org/10.1109/Oceans-Spain.2011.6003595

MME. (2021). Escassez Hídrica e o Fornecimento de Energia Elétrica no Brasil. (p. 11). Ministério de Minas e Energia. https://www.epe.gov.br/sites-pt/sala-de-imprensa/noticias/Documents/infogr%c3%a1fico.pdf

Musial, W. (2007). Offshore Wind Electricity: A Viable Energy Option for the Coastal United States. Marine Technology Society Journal, 41(3), 32–43. https://doi.org/10.4031/002533207787442088

O Globo. (2021). Com crise hídrica, oferta de energia eólica pode dobrar em poucos meses—Jornal O Globo. O GLOBO ECONOMIA. https://oglobo.globo.com/economia/com-crise-hidrica-oferta-de-energia-eolica-pode-dobrar-em-poucos-meses-25069506

O’Keeffe, A., & Haggett, C. (2012). An investigation into the potential barriers facing the development of offshore wind energy in Scotland: Case study – Firth of Forth offshore wind farm. Renewable and Sustainable Energy Reviews, 16(6), 3711–3721. https://doi.org/10.1016/j.rser.2012.03.018

Prefeitura de Caucaia. (2021). Prefeitura de Caucaia. Dados do município. https://www.caucaia.ce.gov.br/omunicipio.php

Ramos Júnior, M. J., & Almeida, E. dos S. (2021). Destinação de pás de turbinas eólicas instaladas no Estado da Bahia, Brasil. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 8(19), 979–992. https://doi.org/10.21438/rbgas(2021)081924

Ramos Júnior, M. J., Figueiredo, P. S., & Travassos, X. L. (2022). Barriers and perspectives for the expansion of wind farms in BRAZIL. Renewable Energy and Environmental Sustainability, 7, 6. https://doi.org/10.1051/rees/2021055

Rocha, M., & Figueiredo, P. S. (2017). Rotas tecnológicas para a produção de ferrocromo no Brasil: Um estudo de viabilidade técnica, econômica e financeira. Tecnologia em Metalurgia Materiais e Mineração, 14(2), 159–166. https://doi.org/10.4322/2176-1523.1172

Samu, R., Fahrioglu, M., & Ozansoy, C. (2019). The potential and economic viability of wind farms in Zimbabwe. International Journal of Green Energy, 16(15), 1539–1546. https://doi.org/10.1080/15435075.2019.1671424

TAESA. (2021). Projeto 0059 – Inspeção Semiautônoma com Drone em Torres de Linha de Transmissão | Taesa. https://institucional.taesa.com.br/pesquisa/projeto-0059-inspecao-semiautonoma-com-drone-em-torres-de-linha-de-transmissao/

Venkatesh, R. (2002). Power quality issues and grid interfacing of wind electric generators. Indian Journal of Power and River Valley Development, 52(9), 215–220.

Viana, L. A., Nascimento, J. L. J. do, & Meireles, A. J. de A. (2016). Complexos eólicos e injustiças ambientais: Mapeamento participativo e visibilização dos conclitos provocados pela iplantação de parques eólicos no Ceará. REVISTA GEOGRAFAR, 11(1), 64. https://doi.org/10.5380/geografar.v11i1.48978

Walters, R., & Walsh, P. R. (2011). Examining the financial performance of micro-generation wind projects and the subsidy effect of feed-in tariffs for urban locations in the United Kingdom. Energy Policy, 39(9), 5167–5181. https://doi.org/10.1016/j.enpol.2011.05.047

Descargas

Publicado

2023-03-27