Computer vision in agriculture: APIs for detection and recognition of plant diseases
DOI:
https://doi.org/10.23925/1984-3585.2019i20p96-112Keywords:
Machine learning, Digital agriculture, Digital imaging, API, Computer visionAbstract
Artificial intelligence (AI) technology has made it possible to identify plant leaf diseases more accurately through image analysis, with beneficial effects to agriculture (cost, efficiency, quality). The article presents the results of studies using three distinct technologies (platforms) applied to one set of 50 images of four plant diseases, showing the visual characteristics of each of them. The study was divided into two stages. The first was carried out with 30 images and the second with 20. The learning progress and the validation analysis were carried out by means of 10 frames. The purpose of testing was to compare disease recognition assertiveness on each technology / platform. Images of the following plant diseases were investigated in this study: Peronospora (downy mildew), Diplocarpon rosae (black spot), powdery mildew and Citrus Canker. The results of the identification of the diseases through images were positive.
References
ATZORI, Luigi; IERA, Antonio; MORABITO, Giacomo. The internet of things: a survey. Computer Networks, v. 54, n. 15, p. 2787-2805, 2010.
BARBEDO, Jayme Garcia Arnal. Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus, v. 2, n. 1, p. 648-660, 2013.
BISHOP, Christopher. Pattern recognition and machine learning. New York, Springer, 2006.
ENCYCLOPAEDIA BRITANNICA. Powdery mildew. Chicago: Encyclopædia Britannica, 2017. Disponível em: britannica.com/science/powderymildew. Acesso em: 2 dez. 2017.
GONZALES, R. C; WOODS, R.E. Processamento digital de imagens. São Paulo: Blucher, 2000.
GOTTWALD, T. R; GRAHAM, James H. Citrus Canker. Site. Disponível em: apsnet.org/edcenter/intropp/lessons/prokaryotes/Pages/CitrusCanker. aspx. Acesso em: 14 fev. 2018.
GÜLÇEHRE, Ç.; BENGIO, Y. Knowledge matters: importance of prior information for optimization. Journal of Machine Learning Research, v. 17, n. 1, p. 226-257, 2016.
HANSEN, Karl D. et al. An autonomous robotic system for mapping weeds in fields. IFAC Proceedings, v. 46, n. 10, p. 217-224, 2013.
HARALICK, Robert M. et al. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, n. 6, p. 610-621, 1973.
JUNTOLLI, Fabricio. Tecnologia já é usada em cerca de 67% das propriedades rurais do país. Alimento Seguro, Abril 17, 2017. Disponível em: alimentoseguro.com.br/post/159877367960/tecnologia-já-é-usadaem-cerca-de-67-das. Acesso em: 27 mai. 2017.
KAMLAPURKAR, Sushil R. Detection of plant leaf disease using image processing approach. International Journal of Scientific and Research Publications, v. 6, n. 2, p. 73-76, 2016.
KOHAVI, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint conference on artificial intelligence, v. 14, p. 1137-1145, 1995.
LUCAS, George B.; CAMPBELL, C. LEE; LUCAS, Leon T. Introduction to plant diseases: Identification and management. New York, NY: Springer, 1992.
MARQUES, F.O.; NETO, V. H. Processamento digital de imagens. Rio de Janeiro: Brasport, 1999.
MOHRI, Mehryar; ROSTAMIZADEH, Afshin; TALWALKAR, Ameet. Foundations of machine learning. Cambridge, MA: MIT Press, 2012.
PEDRINI, Hélio; SCHWARTZ, William Robson. Análise de imagens digitais: princípios, algoritmos e aplicações. São Paulo: Thomson Learning, 2008.
POWERS, David Martin. Evaluation: from precision, recall and F-measure to roc, informedness, markedness and correlation. Technical Report SIE 07-001, 2007.
SANNAKKI, Sanjeev S. et al. Diagnosis and classification of grape leaf diseases using neural networks. In: Computing, communications and networking technologies (ICCCNT), Fourth international conference, p. 1-5, 2013.
VARGAS, Ana Caroline Gomes; PAES, Aline; VASCONCELOS, Cristina Nader. Um estudo sobre redes neurais convulsionais e sua aplicação em detecção de pedestres. In: Proceedings of the xxix conference on graphics, patterns and images, p. 1-4, 2016.
WANG, T.; WU, D. J.; COATES, A.; NG, A. Y. End-to-end text recognition with convolutional neural networks. In: International conference on pattern recognition (ICPR), 2012 21ST. ieee, p. 3304-3308, 2012.
Downloads
Issue
Section
License
Esta revista oferece acesso livre imediato ao seu conteúdo de acordo com a licença CC BY 4.0, em conformidade com a definição de acesso público do Directory of Open Access Journals (DOAJ).
Ao submeter um texto à TECCOGS, os autores asseguram que o material submetido à avaliação e eventual publicação não infringe de modo algum qualquer direito proprietário ou copyright de outros. Com a submissão, o autor transfere em efetivo os direitos de publicação do artigo para a TECCOGS. A transferência de copyright cobre os direitos exclusivos de publicação e distribuição do artigo, incluindo reimpressões ou quaisquer outras reproduções de natureza similar, além de traduções. Os autores mantém o direito de usar todo ou partes deste texto em trabalhos futuros de sua autoria e de conceder ou recusar a permissão a terceiros para republicar todo ou partes do texto ou de suas traduções. Para republicar números da revista na íntegra, qualquer interessado precisa obter permissão por escrito tanto dos autores como também dos editores da TECCOGS. A TECCOGS por si só pode conceder direitos relativos a emissões de periódicos como um todo.
Imagens com direitos autorais pertencentes a terceiros, que não foram concedidos ao autor do texto, devem ser utilizadas somente quando necessárias à análise e ao argumento da pesquisa, sempre indicando as respectivas fontes e autoria. A TECCOGS dispensa o uso de imagens meramente ilustrativas. Se desejar ilustrar um conceito, o autor deve indicar, em forma de URL ou referência bibliográfica, uma referência em que a ilustração esteja disponível.
---------------------------------------------------------------------------------
This journal offers free immediate access to its content under CC BY 4.0, in accordance with Directory of Open Access Journals' (DOAJ) definition of Open Acess.
When submitting a text to TECCOGS, authors ensure that the material submitted for evaluation and eventual publication does not infringe any proprietary right or copyright. Upon submission, authors effectively transfer the publication rights of the article to TECCOGS. The copyright transfer covers the exclusive rights of publication and distribution of the article, including reprints or any other reproduction of similar nature, in addition to translations. Authors retain the right to use all or parts of the text in future works of their own, as well as to grant or refuse permission to third parties to republish all or parts of the text or its translations. In order to fully republish issues of the magazine, anyone interested must obtain written permission from both the authors and the editors of TECCOGS. TECCOGS alone can grant rights relating to issues of journals as a whole.
Images whose copyright belongs to third parties that have not been granted to the author of the text should be used only when essential for the analysis and argument, always indicating theirs respective sources and authorship. TECCOGS dismisses any use of merely illustrative images. To illustrate a concept, the author must indicate, in the form of a URL or bibliographic reference, a source in which the illustration is available.