Intuições de alunos do 9º ano em probabilidade condicionada no contexto de extração de bolas de um saco
Intuitions of 9th grade pupils in conditional probability in the context of drawing balls of a bag

José António Fernandes, Paulo Ferreira Correia

Resumo


Neste texto apresentam-se alguns resultados de um estudo centrado nas ideias intuitivas de probabilidade condicionada de alunos do 9º ano de escolaridade. Participaram no estudo 310 alunos do 9º ano de escolaridade, a quem foi aplicado um questionário com várias tarefas sobre probabilidade condicionada e independência, sendo aqui apenas exploradas algumas das que envolvem probabilidade condicionada. Em termos de resultados, salienta-se que as resoluções dos alunos revelam que estes possuem ideias intuitivas sobre o conceito de probabilidade condicionada no contexto estudado.

This paper aims at describing some results of a study about intuitive ideas of conditional probability of pupils attending the 9th grade. In the study participated 310 Portuguese pupils of the 9th grade (aged 14 years), who answered a questionnaire with several tasks on conditional probability and independence. In this paper we explore just some of the tasks that involve conditional probability. In general, after studied the responses, justifications, and mistakes made by students, the pupils’ resolutions show that they have intuitive ideas about the concept of conditional probability in the context of drawing balls of a bag.



Palavras-chave


Intuições; probabilidade condicionada; alunos do 9º ano

Texto completo:

PDF

Referências


AHLGREN, A.; GARFIELD, J. (1991). Analysis of the probability curriculum. In: KAPADIA, R.; BOROVCNIK, M. G. (Eds.), Chance encounters: probability in education (pp. 107-134). Dordrecht: Kluwer Academic Publishers.

BATANERO, C.; DÍAZ, C. (2010). Training teachers to teach statistics: What can we learn from research? Statistique et Enseignement, v. 1, n. 1, p. 5-20.

BOROVCNIK, M. G.; KAPADIA, R. (2010). Research and developments in probability education internationally. In: JOUBERT, M.; ANDREWS, P. (Eds.), Proceedings of the British Congress for Mathematics Education (pp. 41-48). On line: www.bsrlm.org.uk/IPs/ip30-1/BSRLM-IP-30-1-06.pdf4

CAÑIZARES, M. J.; BATANERO, C. (1997). Influencia del razonamiento proporcional y de las creencias subjetivas en la comparación de probabilidades. Uno, n. 14, p. 99-114.

CORREIA, P. F.; FERNANDES, J. A. (2012). Comparação de probabilidades condicionadas no contexto de extração de bolas de um saco. In: PINTO, H.; JACINTO, H.; HENRIQUES, A.; SILVESTRE, A.; NUNES, C. (Orgs.), Atas do XXIII Seminário de Investigação em Educação Matemática (pp. 429-442). Lisboa: APM.

CORREIA, P. F.; FERNANDES, J. A.; CONTRERAS, J. M. (2011). Intuições de alunos do 9º ano de escolaridade sobre probabilidade condicionada. In: NUNES, C.; HENRIQUES, A.; CASEIRO, A.; SILVESTRE, A.; PINTO, H.; JACINTO, H.; PONTE, J. (Orgs.), Actas do XXII Seminário de Investigação em Educação Matemática. Lisboa: APM.

FALK, R. (1986). Conditional probabilities: Insights and difficulties. In: DAVIDSON, R.; SWIFT, J. (Eds.), Proceedings of Second International Conference on Teaching Statistic (pp. 292-297). Victoria, BC: University of Victoria.

FALK, R. (1993). Understanding probability and statistics: a book of problems. Wellesley, Massachusetts: A K Petrers.

FALK, R.; FALK, R.; LEVIN, I. (1980). A potential for learning probability in young children. Educational Studies in Mathematics, v. 11, n. 2, p. 181-204.

FERNANDES, J. A. (1990). Concepções erradas na aprendizagem de conceitos probabilísticos. Dissertação de mestrado, Universidade do Minho, Braga, Portugal.

FERNANDES, J. A. (1999). Intuições e aprendizagem de probabilidades: uma proposta de ensino de probabilidades no 9º ano de escolaridade. Tese de doutoramento, Universidade do Minho, Braga, Portugal.

FISCHBEIN, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht: D. Reidel.

FISCHBEIN, E. (1987). Intuition in science and mathematics: an educational approach. Dordrecht: Kluwer Academic Publishers.

FISCHBEIN, E.; GAZIT, A. (1984). Does the teaching of probability improve probabilistic intuitions? Educational Studies in Mathematics, v. 15, n. 1, p. 1-24.

FISCHBEIN, E.; SCHNARCH, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal for Research in Mathematics Education, v. 28, n. 1, p. 96-105.

GAL, I. (2005). Towards “probability literacy” for all citizens: building blocks and instructional dilemas. In: JONES, G. (Ed.), Exploring probability in schools: challenges for teaching and learning (pp. 39-63). New York, NY: Springer.

GREEN., D. R. (1983). A survey of probability concepts in 3000 pupils aged 11-16 years. In: GREY, D. R.; HOLMES, P.; BARNETT, V.; CONSTABLE, G. M. (Eds.), Proceedings of the First International Conference on Teaching Statistics (vol. 2, pp. 766-783). Sheffield, UK: Teaching Statistics Trust.

HOGG, R. V.; TANIS, E. A. (1997). Probability and statistical inference (5th ed.). New Jersey: Prentice-Hall.

JONES, G. A.; LANGRALL, C. W.; THORNTON, C. A.; MOGILL, A. T. (1999). Students’ probabilistic thinking in instruction. Journal for Research in Mathematics Education, v. 30, n. 5, p. 487-519.

LECOUTRE, M.; DURAND, J. (1988). Jugements probabilistes et modeles cognitifs: etude d’une situation aleatoire. Educational Studies in Mathematics, v. 19, n. 3, p. 357-368.

MINISTÉRIO DA EDUCAÇÃO (2007). Programa Ajustado de Matemática do Ensino Básico. Lisboa: Autor.

PIAGET, J.; INHELDER, B. (1951). La Genèse de l'idée de hasard chez l'enfant. Paris: Presses Universitaires de France.

POLLATSEK, A.; WELL, A. D.; KONOLD, C.; HARDIMAN, P. (1987). Understanding conditional probabilities. Organitation, Behavior and Human Decision Processes, v. 40, n. 2, p. 255-269.

SHAUGHNESSY, J. M. (1992). Research in probability and statistics: Reflections and directions. In: GROUWS, D. A. (Ed.), Handbook of research on mathematics teaching and learning (pp. 465-494). New York: Macmillan.

SPINILLO, A. G. (2002). O papel de intervenções específicas na compreensão da criança sobre proporção. Psicologia: Reflexão e Crítica, v. 15, n. 3, p. 475-487.

TARR, J. E. (1997). Using middle school students’ thinking in conditional probability and independence to inform instruction. (Doctoral dissertation, Illinois State University, 1997). Dissertation Abstracts International, 49,Z5055.

TARR, J. E.; JONES, G. A. (1997). A framework for assessing middle school students’ thinking in conditional probability and independence. Mathematics Education Research Journal, v. 9, n. 1, p. 39-59.

TARR, J. E.; LANNIN, J. K. (2005). How can teachers build notions of conditional probability and independence? In: JONES, G. A. (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 215-238). New York, NY: Springer.

WATSON, J. M. (1995). Conditional probability: its place in the mathematics curriculum. Mathematics Teacher, v. 88, n. 1, p. 12-17.

WATSON, J. M. (2005). The probabilistic reasoning of middle school students. In JONES, G. A. (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 145-169). New York, NY: Springer.

WATSON, J. M.; KELLY, B. A. (2007). The development of conditional probability reasoning. International Journal of Mathematical Education in Science and Technology, v. 38, n. 2, p. 213–235.

WATSON, J. M.; MORITZ, J. B. (2002). School students’ reasoning about conjunction and conditional events. International Journal of Mathematical Education in Science and Technology, v. 33, n. 1, p. 59-84.


Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


INDEXADORES DA REVISTA