Uma introdução ao estudo das superfícies mínimas utilizando o GeoGebra
Palavras-chave:
superfícies mínimas, sólidos de revolução, GeoGebra.Resumo
Este trabalho objetiva realizar uma introdução ao estudo das superfícies mínimas utilizando o software GeoGebra na construção de modelos, superfícies e sólidos de revolução bem como funções e gráficos para auxiliar na obtenção de sólidos com área superficial otimizada. A partir de um problema proposto inicialmente por J. L. Lagrange e posteriormente estudado por Leonhard Euler sobre superfícies mínimas e um experimento utilizando bolhas de sabão elaborado pelo físico belga J. A. F. Plateau, foram construídos algumas superfícies mínimas no GeoGebra como a esfera, a helicoide e a catenóide. Tal estudo permitiu mostrar que dentre os sólidos de revolução abordados de um modo geral nos ensinos Fundamental e Médio: esfera, cilindro e cone, para um dado volume a esfera é o sólido que apresenta a menor área superficial.
Downloads
Metrics
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Não há cobrança de taxas para a submissão, processamento, e publicação dos trabalhos enviados à revista e registro do DOI junto à CrossRef.
Os autores mantêm os direitos autorais e concedem à revista direito de primeira publicação do trabalho simultaneamente licenciado sob uma licença Creative Commons - Atribuição 4.0 Internacional license CC BY que permite que outros compartilhem o trabalho com um reconhecimento da autoria do mesmo e publicação inicial nessa revista.
A revista GeoGebra incentiva que seus autores cadastrem seus trabalhos em sistemas orientados à gestão de informação e comunicação de pesquisadores tais como: Academia.edu; Mendeley; ResearchGate;etc.