Artificial intelligence technology for radiation oncology understaff mitigation and cost-effective treatment planning
DOI:
https://doi.org/10.23925/1984-4840.2022v24i1/4a7Keywords:
artificial intelligence, radiotherapy planning, computer-assisted, health care costs, investments, neoplasmsAbstract
Treatment with radiation therapy can be relatively inexpensive and highly effective, reducing the overall cost of healthcare, as well as saving lives of cancer patients. To face the posed challenges of laborious tasks and understaff in radiotherapy, the use of knowledge-based models (artificial Intelligence) to reduce the treatment planning times up to 95% might be a promising solution. One such tool, called RapidPlan (Varian Medical Systems, Palo Alto-CA), could be acquired with an investment of a small fraction of the treatment planning system cost. RapidPlan’s support during treatment planning results in a considerable increase in plan quality while reducing plan variability and elaboration time. The goal of this dissertation was to estimate the break-even point from where the time saved during treatment time would pay the initial investment on RapidPlan. Published data demonstrates that RapidPlan can largely benefit radiation therapy institutions by streamlining the treatment planning process and the break-even point started to be achieved after treating 112 to 2668 patients, depending on the cancer types treated for each group. Therefore, it may be possible to realize a return on investment within a reasonable time frame, while benefiting from gains in efficiency, and possibly mitigating understaffing and lack of experience in treatment planning.
Downloads
Metrics
References
Price P, Fleurent B, Barney SE. The role of the global coalition for radiotherapy in political advocacy for radiation therapy as a cost-effective and underfunded modality around the world. Int J Radiat Oncol Biol Phys. 2021;111(1):23–6. doi: 10.1016/j.ijrobp.2021.04.010.
Price P, Barney SE. Initiation of the global coalition for radiotherapy during the COVID-19 pandemic. Lancet Oncol. 2020;21:752–3. doi: 10.1016/S1470-2045(20)30281-3.
Hanna TP, Evans GA, Booth CM. Cancer, COVID-19 and the precautionary principle: prioritizing treatment during a global pandemic. Nature Rev Clin Oncol. 2020;17:268–70. doi: 10.1038/s41571-020-0362-6.
Lievens Y, Defourny N, Corral J, Gasparotto C, Grau C, Borras JM, et al. How public health services pay for radiotherapy in Europe: an ESTRO–HERO analysis of reimbursement. Lancet Oncol. 2020;21:e42–54. doi: 10.1016/S1470-2045(19)30794-6.
Atun R, Jaffray DA, Barton MB, Bray F, Baumann M, Vikram B, et al. Expanding global access to radiotherapy. Lancet Oncol. 2015;16:1153–86. doi: 10.1016/S1470-2045(15)00222-3.
O’Connor SD, Bhalla M. Should artificial intelligence tell radiologists which study to read next? Radiol Artif Intell. 2021;3(2):e210009. doi: 10.1148/ryai.2021210009.
O’Neill TJ, Xi Y, Stehel E, Browning T, Ng YS, Baker C, et al. Active reprioritization of the reading worklist using artificial intelligence has a beneficial effect on the turnaround time for interpretation of head ct with intracranial hemorrhage. Radiol Artif Intell. 2021;3(2):e200024. doi: 10.1148/ryai.2020200024.
The Topol Review. Preparing the healthcare workforce to deliver the digital future: an independent report on behalf of the Secretary of State for Health and Social Care [Internet]. England: The Topol Review, Health Education England, NHS; 2019 [acesso em 9 abr. 2022]. p. 102. Disponível em: https://topol.hee.nhs.uk/wp-content/uploads/HEE-Topol-Review-2019.pdf.
Chen W, Wang C, Zhan W, Jia Y, Ruan F, Qiu L, et al. A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer. Sci Rep. 2021;11(1):1–8. doi: 10.1038/s41598-021-02330-y.
Downing M. Barts Health using AI to prioritise care for colon cancer patients. Our news - Barts Health NHS Trust [Internet]. 2020 [acesso em 9 abr. 2022]. p. 1. Disponível em: https://www.bartshealth.nhs.uk/news/barts-health-using-ai-to-prioritise-care-for-high-risk-colon-cancer-patients-8867.
van Duren-Koopman MJ, Tol JP, Dahele M, Bucko E, Meijnen P, Slotman BJ, et al. Personalized automated treatment planning for breast plus locoregional lymph nodes using Hybrid RapidArc. Pract Radiat Oncol. 2018;8(5):332–41. doi: 10.1016/j.prro.2018.03.008.
Lindberg J, Holmström P, Hallberg S, Björk-Eriksson T, Olsson CE. A national perspective about the current work situation at modern radiotherapy departments. Clin Transl Radiat Oncol. 2020;24:127–34. doi: 10.1016/j.ctro.2020.08.001.
Souza JAM, Rocha HA, Santos MAC, Cherchiglia ML. Factors associated with time to initiate lung cancer treatment in Minas Gerais, Brazil. Ciênc Saude Coletiva. 2022;27(3):1133–46. doi: 10.1590/1413-81232022273.02992021.
Nascimento MI, Azevedo e Silva G. Efeito do tempo de espera para radioterapia na sobrevida geral em cinco anos de mulheres com câncer do colo do útero, 1995-2010. Cad Saúde Pública. 2015;31(11):2437–48. doi: 10.1590/0102-311X00004015.
Mendez LC, Moraes FY, Fernandes GS, Weltman E. Cancer deaths due to lack of universal access to radiotherapy in the Brazilian public health system. Clin Oncol. 2018;30(1):e29–36. doi: 10.1016/j.clon.2017.09.003.
Mendez LC, Moraes FY, Castilho MS, Louie AV, Qu XM. Lives and economic loss in Brazil due to lack of radiotherapy access in cervical cancer: a cost-effectiveness analysis. Clin Oncol. 2019;31(9):e143–8. doi: 10.1016/j.clon.2019.05.004.
Zemplényi AT, Kaló Z, Kovács G, Farkas R, Beöthe T, Bányai D, et al. Cost-effectiveness analysis of intensity-modulated radiation therapy with normal and hypofractionated schemes for the treatment of localised prostate cancer. Eur J Cancer Care (Engl). 2018;27(1):e12430. doi: 10.1111/ecc.12430.
Hospodková P, Husár T, Klíčová B, Severová L, Šrédl K, Svoboda R. Cost analysis of selected radiotherapeutic modalities for prostate cancer treatment: Czech Republic case study for the purposes of Hospital Based HTA. Healthcare. 2021;9(1):98. doi: 10.3390/healthcare9010098.
van Gysen K, O’Toole J, Le A, Wu K, Schuler T, Porter B, et al. Rolling out RapidPlan: what we’ve learnt. J Med Radiat Sci. 2020;67(4):310–7. doi: 10.1002/jmrs.420.
Scaggion A, Fusella M, Roggio A, Bacco S, Pivato N, Rossato MA, et al. Reducing inter- and intra-planner variability in radiotherapy plan output with a commercial knowledge-based planning solution. Phys Med. 2018;53:86–93. doi: 10.1016/j.ejmp.2018.08.016.
Van Dyk J, Zubizarreta E, Lievens Y. Cost evaluation to optimise radiation therapy implementation in different income settings: a time-driven activity-based analysis. Radiother Oncol. 2017;125(2):178–85. doi: 10.1016/j.radonc.2017.08.021.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi: 10.3322/caac.21590.
Chang ATY, Hung AWM, Cheung FWK, Lee MCH, Chan OSH, Philips H, et al. Comparison of planning quality and efficiency between conventional and knowledge-based algorithms in nasopharyngeal cancer patients using intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2016;95(3):981–90. doi: 10.1016/j.ijrobp.2016.02.017.
Rusu I, Roeske J, Solanki A, Kang H. Fully automated planning and delivery of hippocampal-sparing whole brain irradiation. Med Dosim. 2022;47(1):8–13. doi: 10.1016/j.meddos.2021.06.004.
Varian Medical Systems. HyperArc [Internet]. 2022 [acesso em 6 out. 2022]. Disponível em: https://www.varian.com/en-ch/products/radiotherapy/treatment-planning/hyperarc.
Kubo K, Monzen H, Ishii K, Tamura M, Kawamorita R, Sumida I, et al. Dosimetric comparison of RapidPlan and manually optimized plans in volumetric modulated arc therapy for prostate cancer. Phys Med. 2017;44:199–204. doi: 10.1016/j.ejmp.2017.06.026.
Mayo Clinic. Prostate cancer care at Mayo Clinic [Internet]. 2022 [acesso em 24 jun. 2022]. Disponivel em: https://www.mayoclinic.org/diseases-conditions/prostate-cancer/care-at-mayo-clinic/mac-20353097.
Dumane VA, Tam J, Lo YC, Rosenzweig KE. RapidPlan for knowledge-based planning of malignant pleural mesothelioma. Pract Radiat Oncol. 2021;11(2):e219–28. doi: 10.1016/j.prro.2020.06.003.
Fogliata A, Cozzi L, Reggiori G, Stravato A, Lobefalo F, Franzese C, et al. RapidPlan knowledge based planning: Iterative learning process and model ability to steer planning strategies. Radiat Oncol. 2019;14(1):1–12. doi: 10.1186/s13014-019-1403-0.
Hansen CR, Bertelsen A, Hazell I, Zukauskaite R, Gyldenkerne N, Johansen J, et al. Automatic treatment planning improves the clinical quality of head and neck cancer treatment plans. Clin Transl Radiat Oncol. 2016;1:2–8. doi: 10.1016/j.ctro.2016.08.001.
Hazell I, Bzdusek K, Kumar P, Hansen CR, Bertelsen A, Eriksen JG, et al. Automatic planning of head and neck treatment plans. J Appl Clin Med Phys. 2016;17(1):272–82. doi: 10.1120/jacmp.v17i1.5901.
Yang Y, Ford EC, Wu B, Pinkawa M, Van Triest B, Campbell P, et al. An overlap-volume-histogram based method for rectal dose prediction and automated treatment planning in the external beam prostate radiotherapy following hydrogel injection. Med Phys. 2013;40(1):011709. doi: 10.1118/1.4769424.
Shiraishi S, Moore KL. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy. Med Phys. 2016;43(1):378–87. doi: 10.1118/1.4938583.
Lahanas M, Schreibmann E, Baltas D. Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. Phys Med Biol. 2003;48(17):2843–71. doi: 10.1088/0031-9155/48/17/308.
Monz M, Küfer KH, Bortfeld TR, Thieke C. Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning. Phys Med Biol. 2008;53(4):985–98. doi: 10.1088/0031-9155/53/4/011.
Vaccarella S, Laversanne M, Ferlay J, Bray F. Cervical cancer in Africa, Latin America and the Caribbean and Asia: regional inequalities and changing trends. Int J Cancer. 2017;141(10):1997–2001. doi: 10.1002/ijc.30901.
Tinoco M, Waga E, Tran K, Vo H, Baker J, Hunter R, et al. RapidPlan development of VMAT plans for cervical cancer patients in low- and middle-income countries. Med Dosim. 2020;45(2):172–8. doi: 10.1016/j.meddos.2019.10.002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista da Faculdade de Ciências Médicas de Sorocaba
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Os autores no momento da submissão transferem os direitos autorais, assim, os manuscritos publicados passam a ser propriedade da revista.
O conteúdo do periódico está licenciado sob uma Licença Creative Commons 4.0, esta licença permite o livre acesso imediato ao trabalho e que qualquer usuário leia, baixe, copie, distribua, imprima, pesquise ou vincule aos textos completos dos artigos, rastreando-os para indexação, passá-los como dados para o software, ou usá-los para qualquer outra finalidade legal.