Equivalent isoperimetric figures, pentominoes, and geoboard

Authors

DOI:

https://doi.org/10.23925/2358-4122.72659

Keywords:

Isoperimetry; Equivalence; Pentominoes; Geoboard.

Abstract

This article presents an investigation into strategies for constructing isoperimetric polygonal figures (those with the same perimeter) and equivalent figures (those with the same area), based on elements of recreational and manipulative geometry. The objective is to use the properties of isoperimetry and equivalence of polyominoes, particularly pentominoes, in combination with the geoboard as didactic tools for constructing isoperimetric and equivalent polygonal figures. The study adopts a methodological approach grounded in a theoretical essay, with potential applicability in teaching and learning contexts. This approach is pedagogically valuable, as it enables a deeper understanding of the mechanisms involved in designing such representations and their educational function. The results indicate that the integration of pentominoes and the geoboard constitutes an effective didactic strategy for teaching and learning geometric concepts, promoting visualization, comparison, and analysis of metric properties of plane figures.

References

BRASIL. Ministério da Educação. Secretaria de Educação Básica. Base Nacional Comum Curricular. Brasília: MEC/SEB, 2018.

BOYER, Carl B.; MERZBACH, Uta C. História da matemática. 2. ed. São Paulo: Edgard Blücher, 1996.

COURANT, Richard; ROBBINS, Herbert. ¿Qué es la matemática? una exposicion elemental de sus ideas y metodos, 5. ed. Madrid: Aguilar, 1971.

DE BOCK, D; VANPAEMEL, G. The belgian journal mathematica & paedagogia (1953-1974): A forum for the national and international scene in mathematics education. Proceedings of the Seventh European Summer University on the History and Epistemology in Mathematics Education, p. 723-734, 2015.

GARBI, Gilberto Geraldo. A rainha das ciências: um passeio pelo maravilhoso mundo da matemática. - - São Paulo: Editora Livraria da Física, 2006.

GOLOMB, Solomon W. Checker boards and polyominoes. The American Mathematical Monthly, v. 61, n. 10, p. 675-682, 1954.

GOLOMB, Solomon W. Polyominoes: puzzles, patterns, problems, and packings. 2. ed. New Jersey: Princeton University Press, 1994.

GRÜNBAUM, Branko; SHEPHARD, Geoffrey C. Pick's theorem. The American Mathematical Monthly, v. 100, n. 2, p. 150-161, 1993. Disponível em <https://www.jstor.org/stable/2323771>. Acesso em 07 jul. 2025.

STEINHAUS, Hugo. Mathematical snapshots. Courier Corporation, 2012. Disponível em <https://archive.org/details/mathematicalsnap0000stei/page/100/mode/2up?q=base>. Acesso em 07 jul. 2025.

VANHAMME, W. (1954). Le “Géoplan” [The “geoboard”]. Mathematica & Paedagogia, 6, 43-44. Disponível em <https://bibnum.publimath.fr/ACF/ACF15069.pdf >. Acesso em 05 jul. 2025.

Published

2025-12-31

How to Cite

Fadigas, I., & Soares, J. . (2025). Equivalent isoperimetric figures, pentominoes, and geoboard. Ensino Da Matemática Em Debate, 12(4), 79–94. https://doi.org/10.23925/2358-4122.72659

Issue

Section

Artigos