As idéias envolvidas na gênese do Teorema Fundamental do Cálculo, de Arquimedes a Newton e Leibniz.
Resumo
Esse trabalho busca contribuir com o estudo das principais ideias que envolvem o Teorema Fundamental do Cálculo (TFC), desde a Matemática na Grécia Antiga até as contribuições de Newton (1642-1727) e Leibniz (1646-1716), no século XVII. Dada a abrangência de tal tema, focamos nossa atenção na questão da Incomensurabilidade e em decorrência, na definição de Proporção de Eudoxo (390 a.C. - 320 a.C.). Tal definição traz como consequência a 'geometrização‘ da matemática traduzindo as ideias que culminaram nos conceitos de derivada e integral, nas questões de quadratura e cálculo de volumes, por meio dos métodos de Exaustão e o método Mecânico de Arquimedes (287 a.C. - 212 a.C.), e no método do traçado de tangente de Apolônio (262 a.C. - 190 a.C.) . As buscas da tangente a uma curva e a questão da quadratura foram a mola precursora para que os trabalhos de Newton (1642-1727) e Leibniz (1646-1716) pudessem estabelecer o Cálculo Infinitesimal. O renascimento da atividade matemática no século XV, pela necessidade de novas rotas de comércios e navegação, abordando a aritmética, a álgebra e a trigonometria e o século XVI, foram de grande importância, constituindo a base de todo desenvolvimento algébrico. No século XVII, uma importante área foi estabelecida: a Geometria Analítica que muito contribuiu para os resultados alcançados por Newton (1642-1727) e Leibniz (1646-1716), estabelecendo, em definitivo, que o processo de integração e derivação são operações uma inversa da outra. O resultado é hoje conhecido como Teorema Fundamental do Cálculo. O produto da pesquisa realizada é um texto, redigido com preocupação didática, que pretende facilitar o entendimento da interligação das ideias que contribuíram, através de séculos, para o resultado que hoje conhecemos como o Teorema Fundamental do Cálculo. Palavras-chave: Tangente; Quadratura; Incomensurabilidade; Infinitamente pequeno; Teorema Fundamental do Cálculo. This paper seeks to contribute to the study of the main ideas that involve the Fundamental Theorem of Calculus (FTC) from the Mathematics in Ancient Greece to contributions of Newton (1642-1727) and Leibniz (1646-1716), the seventeenth century. Given the scope of this theme, we focus our attention on the question of Incommensurability and in consequence, the definition of Proportion of Eudoxus (390 a.C. - 320 a.C.). Such a definition, results in the 'geometrization' of translating the mathematical ideas that culminated in the concepts of derivative and integral, in quadrature issues and calculation of volumes, through method of exhaustion and method Mechanic Archimedes (287 a.C. - 212 a.C.), and the method of tracing the tangent of Apollonius (262 a.C.) - 190 a.C.). The searches tangent to a curve and the problem of quadrature were a predecessor motive for the work of Newton (1642-1727) and Leibniz (1646-1716) could establish "Infinitesimal Calculus". The revival of mathematical activity in the fifteenth century, with the need for new routes of commerce and navigation, covering arithmetic, algebra and trigonometry and the sixteenth century, were of great importance, forming the basis of all algebraic development. In the seventeenth century, an important area has been established: the Analytic Geometry, which contributed greatly to the achievements of Newton (1642-1727), and Leibniz (1646-1716), by establishing, in definitive, that the process of integration and differentiation are inverse operations of one another. The result is now known as the Fundamental Theorem of Calculus. The product of the research conducted is a text, drafted with didactic concern, which aims to facilitate understanding of the interconnection of ideas that have contributed, through centuries, to the result that we now know as the Fundamental Theorem of calculus. Keywords: Tangent; Quadrature; Incommensurability; Infinitely Small; Fundamental Theorem of Calculus.Metrics
Carregando Métricas ...
Downloads
Publicado
2011-07-25
Como Citar
SANTOS, W. C. dos. As idéias envolvidas na gênese do Teorema Fundamental do Cálculo, de Arquimedes a Newton e Leibniz. Educação Matemática Pesquisa Revista do Programa de Estudos Pós-Graduados em Educação Matemática, São Paulo, v. 13, n. 2, 2011. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/6329. Acesso em: 22 dez. 2024.
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).