Situations pour l’apprentissage de la preuve - en mathématiques - État de la recherche et questions ouvertes

Auteurs

DOI :

https://doi.org/10.23925/1983-3156.2024v26i2p281-343

Mots-clés :

Didactique des mathématiques, Théorie des situations didactiques, Preuve, Démonstration, Argumentation

Résumé

Les recherches sur la complexité épistémique, logique et discursive de l’apprentissage de la preuve ont suscité une abondante littérature au cours des deux dernières décades. Leurs résultats contribuent à une compréhension plus précise des difficultés rencontrées par les élèves et de celles du travail des professeurs. Ils confortent la conception de situations, notamment les situations de validation au sens de la Théorie des situations didactiques (TSD – Brousseau, 1998), dans lesquelles la preuve fonctionne comme outil de résolution de problèmes. Cependant, subsiste la difficulté de saisir la preuve comme objet, pour en reconnaitre les spécificités mathématiques et l’institutionnaliser en tant que telle. C’est sur ce problème que porte ce texte. Ce texte complète ceux des exposés faits au Séminaire national de didactique des mathématiques en 2017 et au CORFEM en 2019. Ces trois exposés avaient pour objet commun l’apprentissage et l’enseignement de la preuve en amont de l’introduction de la démonstration comme forme canonique de preuve en mathématique. Après une introduction rappelant le contexte institutionnel et scientifique, une première partie (sections 2 à 4) est consacrée à un état de la recherche en reprenant les comptes-rendus de travaux marquants relevant de différentes approches, une deuxième partie (section 5) avance des propositions pour constituer une base pour les recherches à venir. La conclusion porte sur les questions ouvertes par le besoin d’ingénieries spécifiques des situations pour susciter et accompagner la genèse et la reconnaissance des normes de la preuve dans la classe de mathématique avant l’enseignement explicite de la démonstration.

Métriques

Chargements des métriques ...

Bibliographies de l'auteur

Nicolas Balacheff, Université Grenoble Alpes, CNRS, Grenoble INP

Directeur de recherche CNRS émérite, Equipe MeTAH, Modèles et Technologies pour l'Apprentissage Humain Laboratoire d’informatique de Grenoble Univ. Grenoble Alpes, CNRS, Grenoble INP

Saddo Ag Almouloud, PUC-SP

Doutorado em Mathematiques et Applications - Université de Rennes 1 em 1992 - frança. Assistente doutor - pontifícia universidade católica de São Paulo, e assistente doutor da fundação Santo André. Consultor ad hoc da fundação de amparo a pesquisa do estado de são Paulo, da capes, bolsista pesquisador de CNPQ, foi coordenador do programa de estudos pós-graduados em educação matemática da PUC-SP de 2007 à 2009 e de 01/08/2013 a 31/07/2017. Atualmente é vice coordenador do referido programa. Foi coordenador do curso de especialização em educação matemática da PUC-SP de 2006 a 2017. Publicou mais de 50 artigos em periódicos especializados e mais de 83 trabalhos em anais de eventos. Possui 5 capítulos de livros e 12 livros publicados. Possui 1 software e mais de 62 itens de produção técnica. Participou de vários eventos no exterior e mais de 112 no brasil. Orientou mais 77 dissertações de mestrado e teses de doutorado na área de educação matemática entre 1996 e 2016. Participou de mais de 200 bancas de defesa de dissertações e doutorados. Coordenou mais de 5 projetos de pesquisa. Atualmente coordena 2 projetos de pesquisa. Atua na área de educação, com ênfase em educação matemática. É avaliador do prêmio victor civita desde 2013. Em suas atividades profissionais interagiu com mais 70 colaboradores em coautorias de trabalhos científicos. Em seu currículo lattes os termos mais frequentes na contextualização da produção científica, tecnológica e artístico-cultural são: ensino-aprendizagem, geometria, educação matemática, matemática, demonstração, ensino básico, formação de professores, geometria dinâmica, TIC.

Références

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, Ray. (1995). Cognitive Tutors: Lessons Learned. Journal of the Learning Sciences, 4(2), 167 207. https://doi.org/10.1207/s15327809jls0402_2

Anderson, T., & Shattuck, J. (2012). Design-Based Research: A Decade of Progress in Education Research? Educational Researcher, 41(1), 16 25. https://doi.org/10.3102/0013189X11428813

Arsac, G. (1988). Les recherches actuelles sur l’apprentissage de la démonstration et les phénomènes de validation en France. Recherches en Didactique des Mathématiques, 9(3), 247 280.

Arsac, G. (2018). Naissance et premiers pas du problème ouvert à l’IREM de Lyon [Allocution pour les 50 ans de l’IREM de Lyon, in: Brève 196, 27 juin 2018].

Arsac, G., Balacheff, N., & Mante, M. (1992). Teacher’s role and reproducibility of didactical situations. Educational Studies in Mathematics, 23(1), 5 29. https://doi.org/10.1007/BF00302312

Arsac, G., Colonna, A., & Chapiron, G. (1992). Initiation au raisonnement déductif au collège. Presses Universitaires de Lyon.

Arsac, G., & Mante, M. (1983). Des « problèmes ouverts » dans nos classes de premier cycle. Petit x, 2, 5 33.

Arsac, G., & Mante, M. (1996). Situations d’initiation au raisonnement déductif. Educational Studies in Mathematics, 33, 21 43.

Artigue, M. (Réalisateur). (2018, décembre 21). Démarches d’investigation, problèmes ouverts, recherche didactique. https://www.youtube.com/watch?v=A1PNXDCJmTo

Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM, 45(6), 797 810. https://doi.org/10.1007/s11858-013-0506-6

Arzarello, F., & Bussi, M. G. B. (1998). Italian trends in research in mathematical education: A national case study from an un international perspective. In A. Sierpinska, & J. Kilpatrick (Éds.), Mathematics Education as a Research Domain: A Search for Identity (Vol. 4, pp. 2). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5196-2_1

Austin, J. L. (1950). In G. Longworth (Éd.), Truth (The virtual issue n°1-2013). The Aristotelian Society. https://www.aristoteliansociety.org.uk/pdf/2013%20AS%20Virtual%20Issue.pdf

Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18(2), 147 176. https://doi.org/10.1007/BF00314724

Balacheff, N. (1988). Une étude des processus de preuve en mathématique chez des élèves de collège [Doctorat ès-sciences]. Université Joseph Fourier - Grenoble 1.

Balacheff, N. (1990). Beyond a psychological approach of the psychology of mathematics education. For The Learning of Mathematics, 10(3), 2 8.

Balacheff, N. (1999). L’argumentation est-elle un obstacle ? Invitation à un débat... [Newsletter]. La lettre de la preuve. http://www.lettredelapreuve.org/OldPreuve/Newsletter/990506Theme/990506ThemeFR.html

Balacheff, N. (2001). Symbolic Arithmetic vs Algebra the Core of a Didactical Dilemma. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Éds.), Perspectives on School Algebra (pp. 249 260). Springer Netherlands. https://doi.org/10.1007/0-306-47223-6_14

Balacheff, N. (2019a). Contrôle, preuve et démonstration. Trois régimes de la validation. In J. Pilet, & C. Vendeira (Éds.), Actes du Séminaire National de Didactique des Mathématiques 2018 (pp. 423 456). ARDM et IREM de Paris - Université de Paris Diderot. https://hal.archives-ouvertes.fr/hal-02333720

Balacheff, N. (2019b). L’argumentation mathématique, précurseur problématique de la démonstration. 29. XXVIe Colloque CORFEM, Jun 2019, Strasbourg, France.

Balacheff, N. (2023). Notes for a study of the didactic transposition of mathematical proof (p. 27) [Preprint].

Ball, D. L. (1991). Implementing the NCTM Standards: Hopes and Huompletarrdles. 20.

Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of teaching Elementary School mathematics. The Elementary School Journal, 93(4), 373 397. http://www.jstor.org/stable/1002018

Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. In J. Kilpatrick, W. G. Martin, & D. Schifter (Éds.), A research Companion to Principles and Standards for School Mathematics (pp. 27 44). NCTM. https://www.researchgate.net/profile/Hyman-Bass/publication/312532588_Making_mathematics_reasonable_in_school/links/5f943d3f299bf1b53e40ca68/Making-mathematics-reasonable-in-school.pdf

Ball, D. L., Lewis, J., Thames, M., & Hoover. (2008). Making Mathematics Work in School. In National Council of Teachers of Mathematics. Study of Teaching: Multiple Lenses, Multiple Views. NCTM Monograph N°14 (pp. 13 44, 195 201). National Council of Teachers of Mathematics. https://www.jstor.org/stable/30037740

Bartolini Bussi, M. G. (1996). Mathematical discussion and perspective drawing in primary school: To Giovanni Prodi on occasion of his 70th birthday. Educational Studies in Mathematics, 31(1 2), 11 41. https://doi.org/10.1007/BF00143925

Boero, P., Consogno, V., Guala, E., & Gazzolo, T. (2009). Research for innovation: A teaching sequence on the argumentatiive approach to probabilistic thinking in grades I-IV and some related basic research results. Recherches en Didactique des Mathématiques, 29(1), 56 96.

Boero, P., Dapueto, C., Ferrari, P., Ferrero, E., Garuti, R., Lemut, E., Parenti, L., & Scali, E. (1995). Aspects of the mathematics—Culture relationship in mathematics teaching-learning in compulsory school. In L. Meira et D. Carraher (Éds.), Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education (17 pages). http://didmat.dima.unige.it/progetti/COFIN/biblio/art_boero/boero%26c_PME_XIX.pdf

Boero, P., & Douek, N. (2008). La didactique des domaines d’experience. Carrefours de l’éducation, 26(2), 99. https://doi.org/10.3917/cdle.026.0099

Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In M. M. F. Pinto, & T. F. Kawasaki (Éds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 179 209). PME.

Brousseau, G. (1972). Processus de mathématisation. In APMEP (Éd.), La mathématique à l’école élémentaire (pp. 428 442). Association des Professeurs de Mathématiques de l’Enseignement Public.

Brousseau, G. (1975). Epistémologie expérimentale vs Didactique [Blog]. Guy Brousseau. https://guy-brousseau.com/3297/1975-epistemologie-experimentale-vs-didactique-2016/

Brousseau, G. (1978). Les obstacles épistémologiques et les problèmes en mathématiques. Recherches en Didactique des Mathématiques, 4(2), 165 198.

Brousseau, G. (1981). Problèmes de didactique des décimaux. Recherches en Didactique des Mathématiques, 2(1), 37 127.

Brousseau, G. (1984). Le rôle du maître et l’institutionnalisation. Actes de la III° Ecole d’Eté de Didactique des Mathématiques. III° Ecole d’Eté de Didactique des Mathématiques. http://guy-brousseau.com/wp-content/uploads/2012/03/84-11-R%C3%B4le-du-Ma%C3%AEtre.pdf

Brousseau, G. (1986). Fondements et méthodes de la didactique des mathématiques. Recherches en Didactique des Mathématiques, 7(2), 33 115. https://revue-rdm.com/1986/fondements-et-methodes-de-la/

Brousseau, G. (1998). Théorie des situations didactiques (Didactique des mathématiques 1970-1990). La Pensée Sauvage.

Brousseau, G., & Gibel, P. (2002). Influence des conditions didactiques sur l’apparition, l’usage et l’apprentissage des raisonnements en classe. Actes du Séminaire National de Didactique des Mathématiques, 205 230.

Cobb, P., Perlwitz, M., & Underwood, D. (1994). Construction individuelle, acculturation mathématique et communauté scolaire. Revue des Sciences de l’Education, 20(1), 41. https://doi.org/10.7202/031700ar

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3/4), 175 190.

Cuq, J.-P., & Gruca, I. (2017). Cours de didactique du français langue étrangère et seconde. Presse Universitaire de Grenoble.

Dhombres, J. (2008). La preuve mathématique en tant qu’elle est épreuve de mémoire. Communications, 84(1), 59 84. https://doi.org/10.3406/comm.2008.2507

Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches en Didactique des Mathématiques, 7(2), 5 31.

Dreyfus, T., Nardi, E., & Leikin, R. (2012). Forms of proof and proving in the classroom. In G. Hanna, & M. de Villiers (Éds.), Proof and proving in mathematics education (Vol. 15, pp. 191 213). Springer Science et Business Media.

Duval, R. (1992). Argumenter, prouver, expliquer : Continuité ou rupture cognitive ? Petit x, 31, 37 61.

EDUSCOL. (2009). Raisonnement et démonstration. MENESR-DGESCO. http://cache.media.eduscol.education.fr/file/Mathematiques/50/0/doc_acc_clg_raisonnementetdemonstration_223500.pdf

EDUSCOL. (2016). Mathématiques—Raisonner. MENESR-DGESCO; http://cache.media.eduscol.education.fr/file/Competences_travaillees/83/6/RA16_C4_MATH_raisonner_547836.pdf

Ernst, D. C., Hodge, A., & Yoshinobu, S. (2017). What is inquiry-based learning? Notices of the American Mathematical Society, 64(06), 570 574. https://doi.org/10.1090/noti1536

Even, R. (2018). Classroom-based issues related to proofs and proving. In A. J. Stylianides, & G. Harel (Éds.), Advances in Mathematics Education Research on Proof and Proving (pp. 145 151). Springer International Publishing. https://doi.org/10.1007/978-3-319-70996-3_10

Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in Mathematics, 3, 413 435.

Garden, R. A., Lie, S., Robitaille, D. F., Angell, C., Martin, M. O., Mullis, I. V. S., Foy, P., & Arora, A. (2008). TIMSS Advanced 2008 assessment frameworks. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands. Tel: +31-20-625-3625; Fax: +31-20-420-7136; e-mail: department@iea.nl; Web site: http://www.iea.nl. https://timssandpirls.bc.edu/timss_advanced/frameworks.html

Georget, J.-P. (2009). Activités de recherche et de preuve entre pairs à l’école élémentaire : Perspectives ouvertes par les communautés de pratique d’enseignants [Didactique des mathématiques, Paris-Diderot]. https://tel.archives-ouvertes.fr/tel-00426603

Gravier, S., & Ouvrier-Buffet, C. (2022). The mathematical background of proving processes in discrete optimization— Exemplification with research situations for the classroom. ZDM – Mathematics Education, 54(4), 925 940. https://doi.org/10.1007/s11858-022-01400-3

Grenier, D. (2009). Changer le rapport des élèves aux mathématiques en intégrant l’activité de recherche dans les classes. Actes du Séminaire National de Didactique des Mathématiques, pp. 161 177. https://docs.irem.univ-paris-diderot.fr/up/publications/AAR10001.pdf

Grenier, D., & Payan, C. (2002). Situations de recherche en « classe » Essai de caractérisation et proposition de modélisation. Actes du Séminaire National de Didactique des Mathématiques, pp.189 203.

Grenier, D., & Payan, C. (2006). Les « situations de recherche » pour l’apprentissage de savoirs transversaux. Actes du colloque EMF 2006, 12 pages. http://emf.unige.ch/files/2814/5390/3967/EMF2006_GT6_Grenier.pdf

Hanna, G., & de Villiers, M. (Éds.). (2012). Proof and proving in mathematics education : The 19th ICMI study (corrected edition 2021). Springer.

Hanna, G., de Villiers, M., Arzarello, F., Dreyfus, T., Durand-Guerrier, V., Jahnke, H. N., Lin, F.-L., Selden, A., Tall, D., & Yevdokimov, O. (2012). ICMI Study 19: Proof and proving in mathematics education: Discussion document. In G. Hanna, & M. de Villiers (Éds.), Proof and proving in mathematics education (Vol. 15, p. 10). Springer.

Herbst, P., & Balacheff, N. (2009). Proving and knowing in public: The nature of proof in a classroom. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Éds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 40 63). Routledge.

Herbst, P., & Chazan, D. (2009). Methodologies for the study of instruction in mathematics classrooms. Recherches en Didactique des Mathématiques, 29(1), 11 32. https://revue-rdm.com/2009/methodologies-for-the-study-of/

Herbst, P., & Chazan, D. (2011). Research on practical rationality: Studying the justification of actions in mathematics teaching. The Mathematics Enthusiast, 8(3), 405 462.

Herbst, P. G. (2003). Using novel tasks in teaching mathematics: Three tensions affecting the work of the teacher. American Educational Research Journal, 40(1), 197 238. https://doi.org/10.3102/00028312040001197

Historique des actions menées par l’association MATh.en.JEANS depuis 1985. (1985, depuis). MATh.en.JEANS. https://www.mathenjeans.fr/historique-mej

Jones, K., & Herbst, P. (2012). Proof, proving, and teacher-student interaction: Theories and contexts. In G. Hanna, & M. de Villiers (Éds.), Proof and proving in Mathematics Education (Vol. 15, pp. 261 277). Springer Netherlands. https://doi.org/10.1007/978-94-007-2129-6_11

Lakatos, I. (1976). Proofs and refutations—The logic of mathematical discovery. Cambridge University Press.

Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27(1), 29 63.

Legrand, M. (1986). L’introduction du débat scientifique en situation d’enseignement. Publications de l’Institut de Recherche Mathématiques de Rennes, fascicule 5 « Didactique des mathématiques », 1988-1989 (exp. n°3), 1 16. http://www.numdam.org/item?id=PSMIR_1988-1989___5_A3_0

Legrand, M. (1993). Débat scientifique en cours de mathématiques et spécificité de l’analyse. Repères-IREM, 10, 123 159. http://www.univ-irem.fr/exemple/reperes/articles/10_article_68.pdf

Legrand, M. (1995a). Un point de vue éthique sur l’enseignement scientifique (première partie). Repère IREM, 21, 91 108.

Legrand, M. (1995b). Un point de vue éthique sur l’enseignement scientifique (deuxième partie). Repères IREM, 21, 111 139.

Legrand, M., Lecorre, T., Leroux, L., & Parreau, A. (2011). Le principe du « débat scientifique » dans un enseignement. IREM de Grenoble. http://irem.univ-grenoble-alpes.fr/spip/IMG/pdf/principedebac949.pdf

Lehmann, D. (1989). La démonstration. IREM de Lille.

Loewenberg Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389 407. https://doi.org/10.1177/0022487108324554

Maher, C. A., & Martino, A. M. (1996). The development of the idea of mathematical proof: A 5-year case study. Journal for Research in Mathematics Education, 27(2), 194. https://doi.org/10.2307/749600

Mantes, M., & Arsac, G. (2007). Les pratiques du problème ouvert. CANOPE -CRDP Lyon.

Margolinas, C. (1992). Eléments pour l’analyse du rôle du maître : Les phases de conclusion. Recherches en Didactique des Mathématiques, 12(1), 113 158.

Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective : The role of the teacher. ZDM, 41(4), 427 440. https://doi.org/10.1007/s11858-009-0199-z

Mariotti, M. A. (2021). Initiation à la preuve : La médiation des environnements informatiques. Actes de la 21e école d’été de didactique des mathématiques. 21e Ecole d’Eté de Didactique des Mathématiques, Ile de Ré.

Mariotti, M. A., Bussi, M. G. B., Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: From history and epistemology to cognition. In E. Pehkonen (Éd.), Proceedings of the 21st PME Conference (Vol. 1, pp. 180 195). University of Helsinki.

Maths à Modeler : Recherches. (2003, depuis). https://mathsamodeler.ujf-grenoble.fr/recherches.html

Mercier, A. (2012). Suivre une démarche d’investigation pour enseigner les relatifs, au collège : Une proposition pragmatique et une expérimentation, en France. In J.-L. Dorier, & S. Coutat (Éds.), Enseignement des mathématiques et contrat social : Enjeux et défis pour le 21e siècle (pp. 1423 1431). http://www.emf2012.unige.ch/index.php/actes-emf-2012

Mullis, I. V. S., Martin, Michael O. (Eds.), & International Association for the Evaluation of Educational Achievement (IEA) (Netherlands). (2017). TIMSS 2019 Assessment Frameworks. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands. Tel: +31-20- 625-3625; Fax: +31-20-420-7136; e-mail: department@iea.nl; Web site: http://www.iea.nl. http://timssandpirls.bc.edu/timss2019/frameworks/

Mullis, I. V. S., International Association for the Evaluation of Educational Achievement, & TIMSS (Éds.). (2007). TIMSS 2007 assessment frameworks. TIMSS et PIRLS International Study Center, Lynch School of Education, Boston College. https://timssandpirls.bc.edu/TIMSS2007/frameworks.html

Mullis, I. V. S., & Martin, M. O. (2014). TIMSS advanced 2015 assessment framework. TIMSS et PIRLS International Study Center.

Mullis, I. V. S., Martin, M. O., Ruddock, G., O’Sullivan, C. Y., & Preuschoff, C. (2009). TIMSS 2011 assessment frameworks. TIMSS et PIRLS International Study Center, Lynch School of Education, Boston College.

Mullis, I. V. S., Martin, M. O., & von Davier, M. (Éds.). (2021). TIMSS 2023 Assessment Frameworks. International Association for the Evaluation of Educational Achievement (IEA).

O’Connor, K. M., Mullis, I. V. S., Garden, R. A., Martin, M. O., & Gregory, K. D. (2003). TIMSS assessment frameworks and specifications 2003 (2nd ed). International Study Center. https://timssandpirls.bc.edu/timss2003i/frameworksD.html

OECD. (2019). PISA 2018 Assessment and Analytical Framework. OECD. https://doi.org/10.1787/b25efab8-enPISA Mathematics Framework. (2022). https://pisa2022-maths.oecd.org/ca/index.html#Mathematical-Reasoning

Polya, G. (1945). How to solve it (1954e éd.). Princeton University Press. https://press.princeton.edu/titles/669.html

Robert, A., & Robinet, J. (1996). Prise en compte du méta en didactique des mathématiques. Recherches en Didactique des Mathématiques, 16(2). https://revue-rdm.com/2005/prise-en-compte-du-meta-en/

Saada-Robert, M., & Brun, J. (1996). Transformations of school knowledge: The contributions and extensions of genetic psychology. Prospects, 26(1), 25 36. https://doi.org/10.1007/BF02195607

Schoenfeld, A. H. (1987). Confessions of an accidental theorist. For the Learning of Mathematics, 7(1), 30 38. http://www.jstor.org/stable/40247883

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics, 38(3), 289 321.

Tabach, M., Hershkowitz, R., Rasmussen, C., & Dreyfus, T. (2014). Knowledge shifts and knowledge agents in the classroom. The Journal of Mathematical Behavior, 33, 192 208. https://doi.org/10.1016/j.jmathb.2013.12.001

Tall, D., Yevdokimov, O., Koichu, B., Whiteley, W., Kondratieva, M., & Cheng, Y.-H. (2012). Cognitive development of proof. In G. Hanna, & M. de Villiers (Éds.), Proof and Proving in Mathematics Education (Vol. 15, pp. 13 49). Springer Netherlands. https://doi.org/10.1007/978-94-007-2129-6_2

Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(2/3), 133 170.

Vergnaud, G. (1991). Langage et pensée dans l’apprentissage des mathématiques. Revue Française de Pédagogie, 96(1), 79 86. https://doi.org/10.3406/rfp.1991.1350

Vergnaud, G. (2011). La pensée est un geste. Comment analyser la forme opératoire de la connaissance. Enfance, 2011(01), 37. https://doi.org/10.4074/S0013754511001042

Villani, C., & Torossian, C. (2018). 21 mesures pour l’enseignement des mathématiques (La documentation française, p. 96) [Rapport public]. Ministère de L’Education Nationale. https://www.ladocumentationfrancaise.fr/rapports-publics/184000086/

Voigt, J. (1985). Patterns and routines in classroom interaction. Recherches en Didactique des Mathématiques, 6(1), 69 118.

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458 477. https://doi.org/10.2307/749877

Publiée

2024-09-01

Comment citer

BALACHEFF, N.; ALMOULOUD, S. A. Situations pour l’apprentissage de la preuve - en mathématiques - État de la recherche et questions ouvertes. Educação Matemática Pesquisa, São Paulo, v. 26, n. 2, p. 281–343, 2024. DOI: 10.23925/1983-3156.2024v26i2p281-343. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/67810. Acesso em: 22 nov. 2024.