Laboratório de geometria na rede (WGL) em contexto de trabalho de casa

Autores

Palavras-chave:

Ambiente Colaborativo, Ambiente Adaptativo, Trabalho de Casa

Resumo

A necessidade de desenvolver ferramentas educacionais de ensino para apoiar a aprendizagem da matemáatica é bem reconhecida. As possibilidades abertas pelas utilizção de ferramentas das tecnologias da informação e comunicação são muitas, ambientes adaptativos, colaborativos, síncronos e assíncronos, contribuem para reforçar a aprendizagem de matérias complexas como a Matemática. A plataforma Laboratório de Geometria na Rede (em Inglês, Web Geometry Laboratory, WGL) carateriza-se por ser um ambiente de ensino presencial/não presencial, colaborativo, adaptativo e integrando um sistema de geometria dinâmica. A plataforma visa contribuir para o melhorar do nível de raciocínio geométrico do aluno. Neste artigo descreve-se de forma breve a plataforma e, através da descrição de um estudo de caso, a sua utilização para a realização, de forma colaborativa, de trabalhos para casa.

Downloads

Não há dados estatísticos.

Metrics

Carregando Métricas ...

Referências

ALEVEN, V., POPESCU, O., & KOEDINGER, K.R. (2002). Towards tutorial dialog to support self- explanation: Adding natural language understanding to a cognitive tutor. In J. D. Moore, C. Redfield, & W. L. Johnson (Eds.), Artificial intelligence in education: AI-ED in the wired and wireless future (pp. 246–255). Amsterdã: IOS Press.

ARZARELLO, F., ROBUTTI, O., & BAZZINI, L. (2005). Acting is learning: focus on the construction of mathematical concepts. Cambridge Journal of Education, 35 (1),55–67.

BARFURTH, M.A. (1995). Understanding the Collaborative Learning Process in a Technology Rich Environment: The Case of Children’s Disagreements. In J.L. Schnase, & E.L. Cunnius(Eds.), TheFirstInternationalConferenceonComputer SupportforCollaborative Learning (pp. 8–13). Hillsdale, NJ: L. Erlbaum Associates Inc.

BLASCO-ARCAS, L., BUIL, I., HERNANDÉZ-ORTEGA, B., & SESE, F. J. (2013). Using clickers in class. The role of interactivity, active collaborative learning and engagement in learning performance. Computers & Education, 62, 102–110.

BOGDAN, R.C., & BIKLEN, S.K. (1994). Investigação Qualitativa em educação: uma introdução o à teoria e aos métodos. Porto: Porto Editora.

BRUSILOVSKY, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Instruction. The Journal of Personalization Research, 11 (1–2), 87–110.

CHRYSAFIADI, K.,& VIRVOU, M. (2013). Student modeling approaches: A literature review for the last decade. Expert Systems with Applications, 40 (11), 4715 –4729.

CICCONI, M. (2014). Vygotsky meets technology: A reinvention of collaboration in the early childhood mathematics classroom. Early Childhood Education Journal, 42(1), 57–65.

COBO, P., FORTUNY, J.M., PUERTAS, E., & RICHARD, P.R. (2007). Agentgeom: A multiagent system for pedagogical support in geometric proof problems. International Journal of Computers for Mathematical Learning, 12(1), 57–79.

COHEN, L., & MANION, L. (2007). Research Methods in Education. New York: Routledge. Cueli, M., Gonz ́alez-Castro, P., Krawec, J., Núñez, J.C., & González-Pienda, J.A. (2015). Hipatia: a hypermedia learning environment in mathematics. Anales de Psicologıa/Annals of Psychology, 32(1), 98–105.

DENZIN, N.K., & LINCOLN, Y.S. (2007). O Planejamento da Pesquisa Qualitativa: Teorias e Abordagens. In N.K. Denzin, & Y.S. Lincoln, O planejamento da pesquisa qualitativa: teorias e abordagens (pp. 15–39). Porto Alegre: Artmed Bookman.

FRIEDMAN, L. W.[Lesley], & FRIEDMAN, H. H. [Hershey] (2014). Using social media technologies to enhance online learning. Journal of Educators Online, 10(1). ERIC No. EJ1004891.

GUBA, E., & LINCOLN, Y.S. (1994). Competing paradigms in qualitative research. In N.K. Denzin & Y.S. Lincoln (Eds.), Handbook of qualitative research, (pp. 105-117). Thousand Oaks, CA: Sage.

HAGUENAUER, C., KOPKE, R., VICTORINO, A., & FILHO, F. (2007). Ambientes Colaborativos de Aprendizagem no Apoio ao Ensino Presencial: A Experiência do Programa de Pós-Graduação. Colabor@- Revista Digital da CVA -Ricesu, 4 (16).

HONG, E., WAN, M.,& PENG, Y. (2011). Discrepancies between students’ and teachers’ perceptions of homework. Journal of Advanced Academics, 22(2), 280-308.

IGLEZAKIS, D. (2004). Adaptive Help for Webbased Applications. In W. Nejdl, & P. De Bra (Eds.), Lecture Notes in Computer Science, 3137. Adaptive Hypermedia and Adaptive Web-based Systems (pp. 304–307). Berlin: Springer.

JANICIC, P., & QUARESMA, P. (2007). Automatic Verification of Regular Constructions in Dynamic Geometry Systems. In F. Botana, & T. Recio (Eds.), Lecture Notes in Computer Science, 4869. Automated Deduction in Geometry (pp 39–51). Berlin: Springer.

JONES, K. (2000). Providing a Foundation for Deductive Reasoning: Students’ Interpretations when Using Dynamic Geometry Software and Their Evolving Mathematical Explanations. Educational Studies in Mathematics. 44(1–2), 55–85.

KULIK, C.C. [Chen-Lin C.], & KULI, J.A.[James A.] (1986). Effectiveness of computer-based education in colleges. AEDS Journal, 19 (Winter/Spring), 81-108.

LAAL, M. [Marjan], & LAAL, M. [Mozhgan] (2012). Collaborative learning: what is it?. Procedia- Social and Behavioral Sciences, 31, 491–495.

LABORATOIRE LEIBNIZ. (2003). Baghera assessment project: Designing an hybrid and emergent educational society. In S. Soury- Lavergne (Ed.), Rapport pour la commission europ ́enne, Programme IST, Les Cahiers du Laboratoire Leibniz no 81. Grenoble.

LAI, E. R. (2011). Collaboration: A literature review (Vol. 2). Pearson Research Report.

LAMB, R.L., VALLETT, D.B., AKMAL, T., & BALDWIN, K. (2014). A computational modeling of student cognitive processes in science education. Computers & Education, 79, 116 – 125.

LÉVY, P. (2001). Cyberculture (Vol. 4). Minnesota: University of Minnesota Press.

LUCAS, A.R. (2012). Using WeBWorK, a Web-Based Homework Delivery and Grading System, to Help Prepare Students for Active Learning, PRIMUS, 22(2), 97–107, doi: 10.1080/ 10511970.2010.497834.

LUENGO, V. (2005). Some didactical and epistemological considerations in the design of educationalsoftware: The cabri-euclide example. International Journal of Computers for Mathematical Learning, 10(1), 1–29.

MALEVICH, K. (2011). The Accuracy and Validity of Online Homework Systems. Tese Mestrado, University of Minnesota Duluth, Estados Unidos da América.

MARTINS, C., COUTO, P., FERNANDES, M., BASTOS, C., LOBO, C., FARIA, L. & CARRAPATOSO, E. (2011) PCMATMathematics Collaborative Learning Platform. In J.B. Pérez et al. (Eds.), Highlights in Practical Applications of Agents and Multiagent Systems(pp. 93–100). Springer Berlin.

MATSUDA, N., & VanLEHN, K. (2005). Advanced geometry tutor: An intelligent tutor that teaches proofwriting with construction. In C.-K. Looi, G. McCalla, B. Bredeweg, & J. Breuker (Eds.), Proceedings of the 12th International Conference on Artificial Intelligence in Education (pp. 443–450). Amsterdam: IOS Press.

MENDICINO, M., RAZZAQ, L., & HEFFERMAN, N.T. (2009). A Comparison of Traditional Homework to Computer-Supported Homework. Journal of Research on Technology in Education, 41 (3), 331–359.

MERRIAM, S. (1988). Case study research in education: A qualitative approach. San Francisco: Jossey-Bass.

NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS. (2000). Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.

MORAES, T. G., SANTORO, F. M. & BORGES, M.R.S. (2005). Tabulæ: educational groupware for learning geometry. Fifth IEEE International Conference on Advanced Learning Technologies, 2005. ICALT 2005, 750–754.

MORIYÓN, R, SAIZ, F. & MORA, M. (2008). GeoThink: An Environment for Guided Collaborative Learning of Geometry. In J. S ́anchez (Ed.) Nuevas Ideas en Inform ́atica Educativa, 4, 198– 206.

NGUYEN, D. M., HSIEH, Y.-C. J. and ALLEN, G. D. (2006). The impact of web-based assessment and practice on students’ mathematics learning attitudes. Journal of Computers in Mathematics and Science Teaching, 25, (3), 251–279.

PONTE, J.P. (1994). O estudo de caso na investigação em educação matemática. Revista Quadrante, 3 (1), 3–18.

QUARESMA, P., & JANICIC, P. (2006). Integrating Dynamic Geometry Software, Deduction Sys- tems, and Theorem Repositories. In Jonathan M. Borwein & William M. Farmer (Eds) Lecture Notes in Artificial Intelligence 4108, 5th International Conference, MKM 2006, Wokingham, UK, August 2006, (pp. 280–294). Berlin: Springer.

QUARESMA, P., & JANIˇcI ́c, P. (2006). GeoThms – a Web System for Euclidean Constructive Geometry. Electronic Notesin TheoreticalComputer Science, 174,(2), 35–48.

QUARESMA, P., & SANTOS, V. (2015). Visual geometry proofsin a learning context. In W. Neuper, &P.ProceedingsofThEdu’15workshopatCICM2015,(pp. 1–8).Washington, DC:CISUC TR201601.

RICHARD, P.R.,& FORTUNY, J.M. (2007). Amélioration des compétences argumentatives a` l’aide d’un système tutoriel en classe de mathématique au secondaire. Annales de didactique et de sciences cognitives, 12, 83–116.

RICHARD, P.R., FORTUNY, J.M., HOHENWARTER, M., & GAGNON, M. (2007). geogebraTUTOR: Une nouvelle approche pour la recherche sur l’apprentissage comp ́etentiel et instrument ́e de la g ́eom ́etrie a` l’ ́ecole secondaire. In T. Bastiaens, & S. Carliner (Eds.), World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 428–435). Quebec: Association for the Advancement of Computing in Education (AACE).

SANTOS, V., & QUARESMA, P. (2013). Plataforma Colaborativa para a Geometria. Indagatio Didactica, 5 (1), 31–39.

SANTOS, V., & QUARESMA, P. (2013). Collaborative environment for geometry. IEEEXplore (INSPEC Accession Number: 14027552), 42–46.

SANTOS, V., & QUARESMA, P. (2012). Integrating DGSs and GATPs in an Adaptative and Col- laborative Blended-Learning Web-Environment. In P. Quaresma, & R.-J. Back (Eds.), ElectronicProceedingsin TheoreticalComputer Science, 79.First Workshop onCTPComponents for Educational Software (THedu’11), EPTCS, 79 (pp. 111–123).

SANTOS, V., & QUARESMA, P. (2008). eLearning Course for Euclidean Geometry. In P. Díaz & Kinshuk & I. Aedo & E. Mora (Eds.). The 8th IEEEInternationalConferenceon Advanced Learning Technologies, 2008 (387–388). Los Alamitos, CA: Computer Society.

STAHL, G., & HESSE, F. (2009). Paradigms of shared knowledge. International Journal of Computer-Supported Collaborative Learning, 4 (4), 365–369.

TRIANTAFILLOU, E., POMPORTSIS, A., & DEMETRIADIS, S. (2003). The design and the formative evaluation of an adaptive educational system based on cognitive styles. Computers &Education, 41 (1), 87–103.

UNITED NATIONS EDUCATIONAL SCIENTIFIC AND CULTURAL ORGANIZATION. (2011). Les d ́efis de l’enseignement des math ́ematiques dans l’ ́education de base [Challenges in basic mathematics education]. Paris: UNESCO.

VYGOTSKY, L. (1978). Interaction between learning and development. Readings on the development of children, 23 (3), 34–41.

WEI, C.S., & ISMAIL, Z. (2010). Peer interactions in computer-supported collaborative learning using dynamic mathematics software. Procedia-Social and Behavioral Sciences, 8, 600–608.

WIKIPEDIA (2016). List of interactive geometry software. http://en.wikipedia.org/wiki/ List_of_interactive_geometry_software, (last accessed, 2017-12-07).

YIN, R.K. (2001). Estudo de caso: planejamento e m ́etodos, 2a edi ̧c ̃ao (D. Grassi Tradução). Porto Alegre: Bookman.

Downloads

Publicado

2017-12-10

Como Citar

Santos, V., & Quaresma, P. (2017). Laboratório de geometria na rede (WGL) em contexto de trabalho de casa. Revista Do Instituto GeoGebra Internacional De São Paulo, 6(2), 93–112. Recuperado de https://revistas.pucsp.br/index.php/IGISP/article/view/35464

Edição

Seção

Artigos