The extract of Schinus terebinthifolius Raddi intensifies morphological alterations in the colon of diabetic rats

Authors

  • Camiliany Pereira da Silva Universidade Federal de Mato Grosso do Sul
  • Marcelo Wecsley Ferreira Araújo Universidade Federal de Mato Grosso do Sul
  • Camila Cavicchioli Sehaber-Sierakowski Universidade Estadual de Maringá
  • Flávia Cristina Vieira Frez Universidade Estadual de Maringá
  • Camila Cristina Iwanaga Universidade Estadual de Maringá
  • Marcelo Biondaro Gois Universidade Federal de Rondonópolis
  • Jacqueline Nelisis Zanoni Universidade Estadual de Maringá
  • Neide Martins Moreira Universidade Estadual do Oeste do Paraná
  • Catchia Hermes-Uliana Universidade Federal de Mato Grosso do Sul

DOI:

https://doi.org/10.23925/1984-4840.2023v25a10

Keywords:

Diabetes mellitus, Bioactive compounds, Antioxidants, Goblet cells, Intraepithelial lymphocytes

Abstract

There are several challenges in the treatment of diabetes mellitus. Some of these challenges include the discovery of bioactive compounds with the potential to be adjuncts in the treatment of diabetes mellitus. In this study, the effects of hydroethanolic extract of Schinus terebinthifolius Raddi on physiological, morphological, and quantitative parameters of the colon of diabetic rats were investigated. For this purpose, 16 90-day-old rats were randomly divided into four groups: Normoglycemics (N); normoglycemics treated with (50 mg/kg) the hydroethanolic extract of S. terebinthifolius Raddi (NA); streptozotocin-induced diabetics (D); and streptozotocin-induced diabetics treated with the hydroethanolic extract of S. terebinthifolius Raddi (DA). The diabetic rats had diarrhea, weight loss, increased water and food intake, and high blood glucose levels. In addition, atrophy of the entire intestinal wall and submucosa, hypertrophy of the muscularis mucosae, and changes in the histoarchitecture of the intestinal crypts and enterocytes were observed in groups NA, D, and DA. In addition, changes in collagen remodeling and the ganglia of the enteric nervous system, as well as changes in goblet cells and intraepithelial lymphocytes, were observed only in groups D and DA. Our results show that treatment with S. terebinthifolius Raddi extract does not protect the colon from the damage caused by diabetes, nor does it reverse physiological parameters. Moreover, the treatment caused morphological and quantitative changes in the colon of normoglycemic rats and intensified the damage caused by diabetes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels, Belgium; 2021.

Harreiter J, Roden M. [Diabetes mellitus: definition, classification, diagnosis, screening and prevention (Update 2023)]. Wien Klin Wochenschr. 2023;135(Suppl 1):7–17. doi: 10.1007/s00508-019-1450-4.

Silva AMO, Andrade-Wartha ERS, Carvalho EBT, Lima A, Novoa AV, Mancini-Filho J. Efeito do extrato aquoso de alecrim (Rosmarinus officinalis L.) sobre o estresse oxidativo em ratos diabéticos. Rev Nutr. 2011;24(1):121–30. doi: 10.1590/S1415-52732011000100012

Iwanaga CC, Ferreira LAO, Bernuci KZ, Fernandez CMM, Lorenzetti FB, Sehaber CC, et al. In vitro antioxidant potential and in vivo effects of Schinus terebinthifolia Raddi leaf extract in diabetic rats and determination of chemical composition by HPLC-ESI-MS/MS. Nat Prod Res. 2019;33(11):1655–8. doi: 10.1080/14786419.2018.1425848.

Yassa HD, Tohamy AF. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats. Acta Histochem. 2014;116(5):844–54. doi: 10.1016/j.acthis.2014.02.002.

Galvão-Alves J, Souza BC. Manejo das complicações gastroenterológicas no paciente diabético. Med Ciênc Arte. 2023;2(1):16–41.

Rodrigues MLC, Motta MEFA. Mechanisms and factors associated with gastrointestinal symptoms in patients with diabetes mellitus. J Pediatr (Rio J). 2012;88(1):17–24. doi: 10.2223/JPED.2153.

Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–90. doi: 10.1038/s41581-020-0278-5.

D’Addio F, Fiorina P. Type 1 Diabetes and Dysfunctional Intestinal Homeostasis. Trends Endocrinol Metab. 2016;27(7):493–503. doi: 10.1016/j.tem.2016.04.005.

Cifuentes-Mendiola SE, Solís-Suarez DL, Martínez-Davalos A, García-Hernández AL. Macrovascular and microvascular type 2 diabetes complications are interrelated in a mouse model. J Diabetes Complications. 2023;37(5):108455. doi: 10.1016/j.jdiacomp.2023.108455

Remedio RN, Castellar A, Barbosa RA, Gomes RJ, Caetano FH. Morphological analysis of colon goblet cells and submucosa in type I diabetic rats submitted to physical training. Microsc Res Tech. 2012;75(6):821–8. doi: 10.1002/jemt.22000.

Zhao J, Yang J, Gregersen H. Biomechanical and morphometric intestinal remodelling during experimental diabetes in rats. Diabetologia. 2003;46(12):1688–97. doi: 10.1007/s00125-003-1233-2.

Rosa CVD, Azevedo SCSF, Bazotte RB, Peralta RM, Buttow NC, Pedrosa MMD, et al. Supplementation with L-Glutamine and L-Alanyl-L-Glutamine Changes Biochemical Parameters and Jejunum Morphophysiology in Type 1 Diabetic Wistar Rats. PLoS One. 2015;10(12):e0143005. doi: 10.1371/journal.pone.0143005

Chandrasekharan B, Anitha M, Blatt R, Shahnavaz N, Kooby D, Staley C, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil. 2011;23(2):131–8, e26. doi: 10.1111/j.1365-2982.2010.01611.x

Graham S, Courtois P, Malaisse WJ, Rozing J, Scott FW, Mowat AMI. Enteropathy precedes type 1 diabetes in the BB rat. Gut. 2004;53(10):1437–44. doi: 10.1136/gut.2004.042481.

Martins-Perles JVC, Bossolani GDP, Zignani I, Souza SRG, Frez FCV, Souza Melo CG, et al. Quercetin increases bioavailability of nitric oxide in the jejunum of euglycemic and diabetic rats and induces neuronal plasticity in the myenteric plexus. Auton Neurosci. 2020;227:102675. doi: 10.1016/j.autneu.2020.102675.

Jugran AK, Rawat S, Devkota HP, Bhatt ID, Rawal RS. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother Res. 2021;35(1):223–45. doi: 10.1002/ptr.6821.

Duek EA de R, Gervásio VL, Eri RY, Barbo MLP, Hausen M, Komatsu D. Curativo a base de poli(l-co-d,l-ácido lático-co-tmc) (pldla-tmc) (70/30) com aroeira aplicado ao tratamento de queimaduras. Rev Fac Ciênc Méd Sorocaba [Internet]. 2018 [acesso em 31 ago. 2023];19(Supl.). Disponível em: https://revistas.pucsp.br/index.php/RFCMS/article/view/40357

El-Nashar HAS, Mostafa NM, Abd El-Ghffar EA, Eldahshan OA, Singab ANB. The genus Schinus (Anacardiaceae): a review on phytochemicals and biological aspects. Nat Prod Res. 2022;36(18):4833–51. doi: 10.1080/14786419.2021.2012772.

De Mendonça FAC, Da Silva KFS, Dos Santos KK, Ribeiro Júnior KAL, Sant’Ana AEG. Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. Fitoterapia. 2005;76(7–8):629–36. doi: 10.1016/j.fitote.2005.06.013.

Sousa DR, Zanini SF, Mussi JMS, Martins JD, Fantuzzi E, Zanini MS. Óleo de aroeira vermelha e de suplementação de vitamina E em substituição aos promotores de crescimento sobre a microbiota intestinal de frangos de corte. Ciênc Rural. 2013;43(12):2228–33. 10.1590/S0103-84782013005000129.

Cole E, Santos RB, Lacerda-Júnior V, Martins JDL, Greco SJ, Cunha-Neto A. Chemical composition of essential oil from ripe fruit of Schinus terebinthifolius Raddi and evaluation of its activity against wild strains of hospital origin. Brazilian J Microbiol. 2014;45(3):821–8. doi: 10.1590/s1517-83822014000300009.

Medeiros KCP, Monteiro JC, Diniz MFFM, Medeiros IA, Silva BA, Piuvezam MR. Effect of the activity of the Brazilian polyherbal formulation: Eucalyptus globulus Labill, Peltodon radicans Pohl and Schinus terebinthifolius Radd in inflammatory models. Rev Bras Farmacogn. 2007;17(1):23–8. doi: 10.1590/S0102-695X2007000100006

Rosas EC, Correa LB, Pádua T de A, Costa TEMM, Luiz Mazzei J, Heringer AP, et al. Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. J Ethnopharmacol. 2015;175(4):490–8. doi: 10.1016/j.jep.2015.10.014.

Scheid T, Moraes MS, Henriques TP, Riffel APK, Belló-Klein A, Poser GL Von, et al. Effects of Methanol Fraction from Leaves of Schinus terebinthifolius Raddi on Nociception and Spinal-Cord Oxidative Biomarkers in Rats with Neuropathic Pain. Evidence-Based Complement Altern Med. 2018;2018:5783412. doi: 10.1155/2018/5783412.

Zanoni JN, Buttow NC, Bazotte RB, Miranda Neto MH. Evaluation of the population of NADPH-diaphorase-stained and myosin-V myenteric neurons in the ileum of chronically streptozotocin-diabetic rats treated with ascorbic acid. Auton Neurosci. 2003;104(1):32–8. doi: 10.1016/S1566-0702(02)00266-7.

Carlini EA, Duarte-Almeida JM, Tabach R. Assessment of the Toxicity of the Brazilian Pepper Trees Schinus terebinthifolius Raddi (Aroeira-da-praia) and Myracrodruon urundeuva Allemão (Aroeira-do-sertão). Phyther Res. 2013;27(5):692–8. doi: 10.1002/ptr.4767.

Carvalho MG, Melo AGN, Aragão CFS, Raffin FN, Moura TFAL. Schinus terebinthifolius Raddi: chemical composition, biological properties and toxicity. Rev Bras Plantas Med. 2013;15(1):158–69. doi: 10.1590/S1516-05722013000100022.

Trevizan AR, Vicentino-Vieira SL, da Silva Watanabe P, G?is MB, de Melo GDAN, Garcia JL, et al. Kinetics of acute infection with Toxoplasma gondii and histopathological changes in the duodenum of rats. Exp Parasitol. 2016;165:22-9. doi: 10.1016/j.exppara.2016.03.015.

Azevedo JF, Hermes-Uliana C, Lima DP, Sant’Ana DMG, Alves G, Araújo EJA. Probiotics protect the intestinal wall of morphological changes caused by malnutrition. An Acad Bras Ciênc. 2014;86(3):1303–14. doi: 10.1590/0001-3765201420130224.

Pastre MJ, Casagrande L, Gois MB, Pereira-Severi LS, Miqueloto CA, Garcia JL, et al. Toxoplasma gondii causes increased ICAM-1 and serotonin expression in the jejunum of rats 12 h after infection. Biomed Pharmacother. 2019;114:108797. doi: 10.1016/j.biopha.2019.108797.

Lima DP, Azevedo JF, Hermes-Uliana C, Alves G, Sant’ana DMG, Araújo EJA. Probiotics prevent growth deficit of colon wall strata of malnourished rats post-lactation. An Acad Bras Ciênc. 2012;84(3):727–36. doi: 10.1590/s0001-37652012005000043.

Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat M., et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014;7(8):4557–76.

Boeing T, Gois MB, Souza P, Somensi LB, Sant´Ana DMG, Silva LM. Irinotecan-induced intestinal mucositis in mice: a histopathological study. Cancer Chemother Pharmacol. 2020; 87(3):327-36. doi: 10.1007/s00280-020-04186-x.

Chott A, Gerdes D, Spooner A, Mosberger I, Kummer JA, Ebert EC, et al. Intraepithelial lymphocytes in normal human intestine do not express proteins associated with cytolytic function. Am J Pathol. 1997;151(2):435–42.

Hernandes L, Pereira LCMS, Alvares EP. Goblet cell number in the ileum of rats denervated during suckling and weaning. Biocell. 2003;27(3):347–51.

Sant’Ana DMG, Gois MB, Zanoni JN, da Silva A V., da Silva CJT, Araújo EJA. Intraepithelial lymphocytes, goblet cells and VIP-IR submucosal neurons of jejunum rats infected with Toxoplasma gondii. Int J Exp Pathol. 2012;93(4):279–86. doi: 10.1111/j.1365-2613.2012.00824.x.

Pastre MJ, Gois MB, Casagrande L, Pereira-Severi LS, de Lima LL, Trevizan AR, et al. Acute infection with Toxoplasma gondii oocysts preferentially activates non-neuronal cells expressing serotonin in the jejunum of rats. Life Sci. 2021;283(15):119872. doi: 10.1016/j.lfs.2021.119872.

Pereira AV, Góis MB, Lera KRJL, Falkowski-Temporini GJ, Massini PF, Drozino RN, et al. Histopathological lesions in encephalon and heart of mice infected with Toxoplasma gondii increase after Lycopodium clavatum 200dH treatment. Pathol Res Pract. 2017;213(1):50–7. doi: 10.1016/j.prp.2016.11.003.

Hermes-Uliana C, Panizzon CPNB, Trevizan AR, Sehaber CC, Ramalho FV, Martins HA, et al. Is L-glutathione more effective than L-glutamine in preventing enteric diabetic neuropathy? Dig Dis Sci. 2014;59(5):937–48. doi: 10.1007/s10620-013-2993-2.

Sukhotnik I, Shamir R, Bashenko Y, Mogilner JG, Chemodanov E, Shaoul R, et al. Effect of oral insulin on diabetes-induced intestinal mucosal growth in rats. Dig Dis Sci. 2011;56(9):2566–74. doi: 10.1007/s10620-011-1654-6.

Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319–30. doi: 10.1007/s11894-010-0131-2.

Hoytema van Konijnenburg DP, Mucida D. Intraepithelial lymphocytes. Curr Biol. 2017;27(15):R737–9. doi: 10.1016/j.cub.2017.05.073.

Mendonça JC, Carvalho CA, Souza RR. Arrangement of the collagen and elastic fibers in the upper human duodenum. Rev Hosp Clin Fac Med Sao Paulo. 1993;48(1):13–6.

Beckman MJ, Shields KJ, Diegelmann RF. Collagen. In: Wnek G, Bowlin G. Encyclopedia of Biomaterials and Biomedical Engineering. Boca Raton: CRC Press; 2004. p. 1847–56.

Furness JB. The enteric nervous system. In: Brown A, Linden S Van der, editors. Malden: Blackwell; 2006. 288 p.

Schoffen JPF, Vicentini FA, Marcelino CG, Araújo EJA, Pedrosa MMD, Natali MRM. Food restriction beginning at lactation interferes with the cellular dynamics of the mucosa and colonic myenteric innervation in adult rats. An Acad Bras Cienc. 2014 Dec;86(4):1833–48. doi: 10.1590/0001-3765201420140163.

De Giorgio R, Guerrini S, Barbara G, Stanghellini V, De Ponti F, Corinaldesi R, et al. Inflammatory neuropathies of the enteric nervous system. Gastroenterology. 2004;126(7):1872–83. doi: 10.1053/j.gastro.2004.02.024.

Sant’Ana D de MG, Gois MB, Hermes-Uliana C, Pereira-Severi LS, Baptista EM, Mantovani LC, et al. Acute infection with an avirulent strain of Toxoplasma gondii causes decreasing and atrophy of nitrergic myenteric neurons of rats. Acta Histochem. 2017; 119(4):423-7. doi: 10.1016/j.acthis.2017.04.008.

Pereira RVF, Linden DR, Miranda-Neto MH, Zanoni JN. Differential effects in CGRPergic, nitrergic, and VIPergic myenteric innervation in diabetic rats supplemented with 2% L-glutamine. An Acad Bras Cienc. 2016;88 Suppl 1:609-12. doi: 10.1590/0001-3765201620150228.

Downloads

Published

2024-04-03

How to Cite

1.
Silva CP da, Araújo MWF, Sehaber-Sierakowski CC, Frez FCV, Iwanaga CC, Gois MB, Zanoni JN, Moreira NM, Hermes-Uliana C. The extract of Schinus terebinthifolius Raddi intensifies morphological alterations in the colon of diabetic rats. Rev. Fac. Ciênc. Méd. Sorocaba [Internet]. 2024Apr.3 [cited 2024Nov.21];25(Fluxo contínuo):e64181. Available from: https://revistas.pucsp.br/index.php/RFCMS/article/view/64181

Issue

Section

Original Article