Relationship between animal and plant protein consumption and body composition in gym members

Authors

  • Larissa Lali Lampert Universidade de Santa Cruz do Sul (UNISC). Programa de Pós-Graduação em Promoção da Saúde
  • Patrícia Molz Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)
  • Eduarda da Silva Limberger Castilhos Universidade de Santa Cruz do Sul (UNISC). Programa de Pós-Graduação em Promoção da Saúde
  • Hildegard Hedwig Pohl Universidade de Santa Cruz do Sul (UNISC). Programa de Pós-Graduação em Promoção da Saúde
  • Diene da Silva Schlickmann Universidade de Santa Cruz do Sul (UNISC). Programa de Pós-Graduação em Promoção da Saúde
  • Silvia Isabel Rech Franke Universidade de Santa Cruz do Sul (UNISC). Programa de Pós-Graduação em Promoção da Saúde

DOI:

https://doi.org/10.23925/1984-4840.2024v26a4

Keywords:

Dietary Intake, Animal Protein, Plant Protein, Body Composition

Abstract

body composition of gym members. Methods: A cross-sectional study was conducted, assessing gym users. Protein intake was determined using the average of three dietary recalls and body composition using a bioimpedance scale. Pearson's correlation test was utilized to evaluate the association between variables. Results: Most of the participants were classified as overweight (43.2%), presented a high body fat percentage (66.4%), and had an adequate percentage of muscle mass (56.8%). The average protein intake was 1.51 ± 0.72 g/kg, with a prevalence of inadequacy (53.6%). The dietary protein content was predominantly of animal origin (80.26 ± 13.51%). The percentage of animal protein in the diet exhibited a positive correlation with body weight (r = 0.212; p = 0.020), body mass index (BMI) (r = 0.192; p = 0.034), and visceral fat (r = 0.202; p = 0.025). In contrast, the percentage of vegetable protein in the diet presented a negative correlation with weight (r = -0.202; p = 0.025), BMI (r = -0.197; p = 0.029), and visceral fat (r = -0.235; p = 0.009). Conclusion: The dietary protein consumption predominantly relied on animal protein sources, which positively correlated with body weight, BMI, and visceral fat. Conversely, vegetable protein exhibited an inverse correlation with these parameters. These findings suggest the importance of considering the protein source in the diet of gym practitioners, as the origin of protein consumed may influence body composition and related health and fitness outcomes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126-31.

World Health Organization. WHO guidelines on physical activity and sedentary behaviour: at a glance [internet]. Genebra: World Health Organization; 2020.

Zouhal H, Berro AJ, Kazwini S, Saeidi A, Jayavel A, Clark CC, et al. Effects of exercise training on bone health parameters in individuals with obesity: A systematic review and meta-analysis. Front Physiol. 2022;12:807110. doi: 10.3389/fphys.2021.807110.

González-Rocha A, Mendez-Sanchez L, Ortíz-Rodríguez MA, Denova-Gutiérrez E. Effect of exercise on muscle mass, fat mass, bone mass, muscular strength and physical performance in community dwelling older adults: systematic review and meta-analysis. Aging Dis. 2022;13(5):1421-35. doi: 10.14336/AD.2022.0215.

Anderson E, Durstine JL. Physical activity, exercise, and chronic diseases: a brief review. Sports Med Health Sci. 2019;1(1):3-10. doi: 10.1016/j.smhs.2019.08.006.

Krzysztofik M, Wilk M, Wojdała G, Gołaś A. Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. Int J Environ Res Public Health. 2019;16(24):4897. doi: 10.3390/ijerph16244897

Tipton KD, Ferrando AA. Improving muscle mass: response of muscle metabolism to exercise, nutrition and anabolic agents. Essays Biochem. 2008;44:85-98. doi: 10.1042/BSE0440085.

Stokes T, Hector AJ, Morton RW, McGlory C, Phillips SM. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients. 2018;10(2):180. doi: 10.3390/nu10020180.

Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15(1):38. doi: 10.1186/s12970-018-0242-y.

Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017;14:20. doi: 10.1186/s12970-017-0177-8.

Yasuda J, Tomita T, Arimitsu T, Fujita S. Evenly distributed protein intake over 3 meals augments resistance exercise–induced muscle hypertrophy in healthy young men. J Nutr. 2020;150(7):1845-51. doi: 10.1093/jn/nxaa101.

World Health Organization. Healthy diet. Genebra: World Health Organization; 2020.

Kerksick CM, Jagim A, Hagele A, Jäger R. Plant proteins and exercise: what role can plant proteins have in promoting adaptations to exercise?. Nutrients. 2021;13(6):1962. doi: 10.3390/nu13061962.

Day L, Cakebread JA, Loveday SM. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci Technol. 2022;119:428-42. doi: 0.1016/j.tifs.2021.12.020.

Langyan S, Yadava P, Khan FN, Dar ZA, Singh R, Kumar A. Sustaining protein nutrition through plant-based foods. Front Nutr. 2022;8:772573. doi: 10.3389/fnut.2021.772573.

Molz P, Silva TG, Schlickmann DS, Steffens JP, Colombelli RAW, Franke SIR. Influence of different categories of supplements on the body composition of resistance-training practitioners. Nutrition. 2023;105:111816. doi: 10.1016/j.nut.2022.111816.

Buzzard M. 24-hours dietary recall and food record methods. In: Willett, WC, editor. Nutritional Epidemiology. Oxford: Oxford University Press; 1998. p. 50-73.

Riseth L, Nøst TH, Nilsen TI, Steinsbekk A. Long-term members’ use of fitness centers: A qualitative study. BMC Sports Sci Med Rehabil. 2019;11:1-9. doi: 10.1186/s13102-019-0114-z.

Tavares AS, Serpa S, Horta L, Carolino E, Rosado A. Prevalence of performance-enhancing substance use and associated factors among Portuguese gym/fitness users. Subst Use Misuse. 2020;55(7):1059-67. doi: 10.1080/10826084.2020.1726392.

Soekmawati RJ, Nathan RJ, Victor V, Pei Kian T. Gym-goers’ self-identification with physically attractive fitness trainers and intention to exercise. Behav Sci. 2022;12(5):158. doi: 10.3390/bs12050158.

Thomas MH, Burns SP. Increasing lean mass and strength: A comparison of high frequency strength training to lower frequency strength training. Int J Exerc Sci. 2016;9(2):159.

Barbosa de Jesus IA, Oliveira DG, Moreira AP. Consumo alimentar e de suplementos nutricionais por praticantes de exercício físico em academia de Juiz de Fora-MG. Rev Bras Nutr Esp. 2017;11(66):695-707.

Antonio J, Candow DG, Forbes SC, Ormsbee MJ, Saracino PG, Roberts J. Effects of dietary protein on body composition in exercising individuals. Nutrients. 2020;12(6):1890. doi: 10.3390/nu12061890.

Silva Júnior R, Abreu WC, Silva RF. Composição corporal, consumo alimentar e hidratação de praticantes de musculação. Rev Bras Nutr Esp. 2017;11(68):936-46.

Antonio J, Ellerbroek A, Silver T, Orris S, Scheiner M, Gonzalez A, et al. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women–a follow-up investigation. J Int Soc Sports Nutr. 2015;12(1):39. doi: 10.1155/2016/9104792.

Volek JS, Volk MB, Gómez AL, Kunces LJ, Kupchak BR, Freidenreich DJ. Whey protein supplementation during resistance training augments lean body mass. J Am Coll Nutr. 2013;32(2):122-35. doi: 10.1080/07315724.2013.793580.

Andreoli V, Bagliani M, Corsi A, Frontuto V. Drivers of protein consumption: a cross-country analysis. Sustainability. 2021;13(13):7399. doi: 10.3390/su13137399

Song M, Fung TT, Hu FB, Willett WC, Longo VD, Chan AT, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016;176(10):1453-63. doi: 10.1001/jamainternmed.2016.4182.

Food and Agriculture Organization of the United Nations. Dietary protein quality evaluation in human nutrition. Rome: FAO; 2011.

Published

2024-05-29

How to Cite

1.
Lampert LL, Molz P, Castilhos E da SL, Pohl HH, Schlickmann D da S, Franke SIR. Relationship between animal and plant protein consumption and body composition in gym members. Rev. Fac. Ciênc. Méd. Sorocaba [Internet]. 2024May29 [cited 2024Jul.5];26(Fluxo contínuo):e64678. Available from: https://revistas.pucsp.br/index.php/RFCMS/article/view/64678

Issue

Section

Original Article