Entendendo sistemas de equações lineares: um estudo de caso no contexto da escola no Chile<br>Understanding of linear equations systems: a case study in the school context in Chile

Authors

DOI:

https://doi.org/10.23925/1983-3156.2019vol21i3p347-368

Keywords:

Modos de Pensamiento, SEL, Comprensión

Abstract

Con base en la Teoría Modos de Pensar de Sierpinska, se presentan tres modos de pensar el concepto Sistema de Ecuaciones Lineales (SEL): (1) como un conjunto que debe cumplir propiedades estructurales del álgebra lineal, (2) como un conjunto solución algebraico de ecuaciones (3) como planos y rectas en el espacio, o rectas en el plano. La finalidad de la investigación es mostrar evidencias, con sustento teórico, de la comprensión del concepto conjunto solución en estudiantes de enseñanza media, y de cómo ellos se sitúan en los modos, para dar respuesta a cinco actividades relativas a los SEL. Los resultados muestran la necesidad de articular al menos dos de estos modos de pensamiento para dar una respuesta correcta a las actividades presentadas, de lo contrario los estudiantes manifiestan errores cuando se situaron en un solo modo de pensar.

Based on Sierpinska's Thinking Modes Theory, three modes of thinking are presented: the System of Linear Equations (SEL): (1) as a set that must fulfill structural properties of linear algebra, (2) as a set algebraic solution of equations (3) as planes and lines in space or in the plane. The purpose of the research is to show evidence, with theoretical support, of the understanding of the joint solution concept in middle school students, and how they are placed in the modes, to respond to five activities related to SEL. The results show the need to articulate at least two of these ways of thinking in order to give a correct answer to the activities presented, with students showing errors that were only in one of the ways of thinking.

Metrics

Metrics Loading ...

Author Biographies

Samuel Campos, Pontificia Universidad Católica de Chile

Candidato a doctor en Didáctica de la Matemática – Pontificia Universidad Católica de Valparaíso, Chile. Magister en Didáctica de la Matemática – Pontificia Universidad Católica de Valparaíso, Chile. Profesor de la Facultad de Educación de la Pontificia Universidad Católica de Chile.

Marcela Parraguez, Pontificia Universidad Católica de Valparaíso

Doctora en Didáctica de la Matemática - Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA-IPN), México. Directora del Instituto de Matemática de la Pontificia Universidad Católica de Valparaíso.

References

BOZALLA, A.; GARCÍA, S. Espacios de reflexión sobre la enseñanza de la matemática en la escuela media. Análisis gráfico como puerta de entrada hacia el aprendizaje de sistemas de ecuaciones lineales de 2 × 2. En P. Lestón (Ed.), Acta Latinoamericana de Matemática Educativa (pp. 1031-1039). Distrito Federal, México: Comité Latinoamericano de Matemática Educativa, 2014.

DE BURGOS ROMÁN, J. Álgebra Lineal. España: McGraw-Hill Interamericana de España, 1993.

DORIER, J. L.; SIERPINSKA, A. Research into the teaching and learning of linear algebra. New ICMI Studies Series, n. 7, p. 255-274, dic. 2001.

FIGUEROA, R. Resolución de problemas con sistemas de ecuaciones lineales con dos variables. Una propuesta para el cuarto año de secundaria desde la teoría de situaciones didácticas (Tesis de Magister en Didáctica de la Matemática) - Pontificia Universidad Católica del Perú, Lima, 2013.

HOFFMAN, K.; KUNZE, R.; FINSTERBUSCH, H. E. Álgebra Lineal. Ciudad de México, México: Prentice-Hall Hispanoamericana, 1973.

JÁCOME, M.; TORRES, C.; ARAUJO, C. Enseñanza del procesamiento digital de imágenes a través de objetos virtuales de aprendizaje en entornos e-learning. Revista colombiana de tecnologías de avanzada, Santander, Colombia, v. 2, n. 28, p. 72-76. 2016.

MINEDUC. Ajuste curriculares. Santiago, Chile: Ministerio de Educación, 2011. MINEDUC. Bases Curriculares. Santiago, Chile: Ministerio de Educación, 2015.

MINEDUC. Programa de estudio Matemática Primer año medio. Santiago, Chile: Ministerio de Educación, 2016.

OCHOVIET, C. Sobre el concepto de solución de un sistema de ecuaciones lineales con dos incógnitas Tesis (Doctorado en Matemática Educativa). CICATA-IPN, Ciudad de México, México, 2009.

PINTO-ROJAS, I.; PARRAGUEZ, M. Articulators for Thinking Modes of the Derivative from a Local Perspective. IEJME—Mathematics Education, v. 12, n. 10, p. 873-898, nov, 2017.

REGALADO, A.; DELGADO, F.; MARTÍNEZ, R.; PERALTA, E. Balanceo de Ecuaciones Químicas Integrando las Asignaturas de Química General, Algebra Lineal y Computación: Un Enfoque de Aprendizaje Activo. Formación universitaria, La serena, Chile, v. 7, n. 2, p. 29-40. 2014.

SEGURA, S. (2004). Sistemas de ecuaciones lineales: una secuencia didáctica. Revista Latinoamericana de Investigación en Matemática Educativa, México D.F., v. 7 n. 1, p. 49-78, mar. 2004.

SIERPINSKA, A. On Some Aspects of Students’ Thinking in Linear Algebra. En J.-L. Dorier (Ed.), On the Teaching of Linear Algebra (pp. 209-246). Dordrecht, Netherlands: Springer, 2000.

STAKE, R. Investigación con estudio de casos. Madrid: Morata, 2007.

VÁZQUEZ, R.; ROMO, A.; ROMO-VÁZQUEZ, R.; TRIGUEROS, M. La separación ciega de fuentes: un puente entre el álgebra lineal y el análisis de señales.Educación matemática, México D.F., v. 28, n. 2, p. 31-57, ago. 2016.

Published

2019-12-20

How to Cite

CAMPOS, S.; PARRAGUEZ, M. Entendendo sistemas de equações lineares: um estudo de caso no contexto da escola no Chile&lt;br&gt;Understanding of linear equations systems: a case study in the school context in Chile. Educação Matemática Pesquisa, São Paulo, v. 21, n. 3, 2019. DOI: 10.23925/1983-3156.2019vol21i3p347-368. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/44206. Acesso em: 10 jan. 2025.

Issue

Section

Finalizada - Educação Algébrica