Aspectos matemáticos do problema das n-rainhas e a construção do conhecimento por alunos de Ciência da Computação

Autores

DOI:

https://doi.org/10.23925/1983-3156.2024v26i1p642-667

Palavras-chave:

Generalização de padrões, Problema das n-rainhas, Teoria das situações didáticas, Engenharia didática, Ciência da computação

Resumo

O presente artigo relata uma pesquisa qualitativa que teve como sujeitos um grupo de alunos de um curso superior em Ciência da Computação, com a proposta de resolver uma questão relacionada ao problema das n-rainhas, uma generalização do problema original, que consistia em dispor 8 rainhas em um tabuleiro de xadrez, levando em conta posições distintas, de modo que as peças não se capturem mutuamente. A sequência didática específica consistia em propor uma generalização cuja aplicação fornecesse o número de diagonais a serem consideradas para a resolução do problema em um tabuleiro qualquer n por n, com n maior do que 3. A partir dos pressupostos da Engenharia Didática, e tendo por suportes teóricos principais a Teoria das Situações Didáticas (TSD) e o trabalho de Zazkis e Liljedahal sobre generalizações próximas e distantes, os estudantes desenvolveram uma trajetória investigativa autônoma, baseada em colaborações, para apresentarem soluções admissíveis para o problema proposto. Os resultados permitem inferir que a experiência em torno da resolução de problemas matemáticos é relevante como recurso de aprendizagem em cursos superiores de Ciência da Computação, considerando um cenário de uso intensivo de tecnologias digitais.

Biografia do Autor

Gerson Pastre Oliveira, CEETEPS (Fatec Jundiaí) – UNIP (Universidade Paulista)

Doutor em Educação

Referências

Abramson, B., & Yung, M. (1989). Divide and conquer under global constraints: a solution to the N-Queens problem. United States. https://doi.org/10.1016/0743-7315(89)90011-7

Barquero, B., & Bosch, M. (2015). Didactic Engineering as a Research Methodology: From Fundamental Situations to Study and Research Paths. In: Watson, A. e Ohtani, M. (Eds.). Task Design in Mathematics Education: New ICMI Study Series). 10.1007/978-3-319-09629-2_8.

Brasil, Ministério da Educação, Conselho Nacional de Educação, Câmara de Educação Superior. (2016). “Resolução Número 5, de 16 de novembro de 2016”. Ministério da Educação. http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=52101-rces005-16-pdf&category_slug=novembro-2016-pdf&Itemid=30192.

Brousseau, G. (2002). Theory of Didactical Situations in Mathematics: didactique des mathématiques, 1970–1990. Dordrecht: Kluwer Academic.

Echeverría, M. D. P. (1998). A solução de problemas em matemática. In: POZO, J. I. (org.). A solução de problemas: aprender a resolver, resolver para aprender. Porto Alegre: ArtMed. 44-65.

El Abidine, B. Z. (2023). An incremental approach to the n-queen problem with polynomial time. Journal of King Saud University – Computer and Information Sciences, 35. 1 – 7. https://doi.org/10.1016/j.jksuci.2023.02.002

Gent, I.P., Jefferson, C., & Nightingale, P. (2017). Complexity of n-Queens Completion. Journal of Artificial Intelligence Research, 59. 815 – 848. https://doi.org/10.1613/jair.5512

Gersting, J. L. (1999). Fundamentos matemáticos para Ciência da Computação. 4. ed. LTC: Rio de Janeiro.

Hamilton, E. (2007). “What changes are needed in the kind of problem-solving situations where mathematical thinking is needed beyond school?”. Foundations for the Future in Mathematics Education. Editors R. Lesh, E. Hamilton, and Kaput (Mahwah, NJ: Lawrence Erlbaum), 1–6.

Klang N., Karlsson N., Kilborn W., Eriksson P., & Karlberg M (2021). Mathematical Problem-Solving Through Cooperative Learning – The Importance of Peer Acceptance and Friendships. Frontiers in Education, 6. 10.3389/feduc.2021.710296.

Kondrak, G., Van Beek, P. (1997). A theoretical evaluation of selected backtracking algorithms. Artificial Intelligence, 89 (1-2). 365 – 387. https://doi.org/10.1016/S0004-3702(96)00027-6

Mitchell, M. (1999). An introduction to genetic algorithms. 5. ed. Cambridge: MIT Press.

Morais, C. G. B., Mendes Neto, F. M., & Osório, A. J. M. (2020). Difficulties and challenges in the learning process of algorithms and programming in higher education: a systematic literature review. Research, Society and Development, 9(10), e9429109287. https://doi.org/10.33448/rsd-v9i10.9287

Oliveira, G. P. (2018). Sobre tecnologias e Educação Matemática: fluência, convergência e o que isto tem a ver com aquilo. In Oliveira, G. P. (Org.). Educação Matemática: epistemologia, didática e tecnologia. São Paulo: Editora Livraria da Física.

Oliveira, G. P., Mastroianni, M.T.R. (2015). Resolução de problemas matemáticos nos anos iniciais do Ensino Fundamental: uma investigação com professores polivalentes. Revista Ensaio, 17 (2). 455-482. http://dx.doi.org/10.1590/1983-21172015170209

Osaghae, E. O. (2021). Solution to n-Queens Problem: Heuristic Approac. Transactions on Machine Learning and Artificial Intelligence, 9(2). 26-35.

Ponte, J. P., Boavida, A., Graça, M., e Abrantes, P. (1997). Didáctica da matemática: Ensino secundário. Lisboa: Ministério da Educação, Departamento do Ensino Secundário.

Zazkis, R. & Liljedahal, P. (2002). Generalization of patterns: the tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49, 379-402.

Publicado

2024-04-30

Como Citar

Oliveira, G. P. (2024). Aspectos matemáticos do problema das n-rainhas e a construção do conhecimento por alunos de Ciência da Computação. Educação Matemática Pesquisa: Revista Do Programa De Estudos Pós-Graduados Em Educação Matemática, 26(1), 642–667. https://doi.org/10.23925/1983-3156.2024v26i1p642-667