GeoGebra Discovery at EGMO 2022

Authors

DOI:

https://doi.org/10.23925/2237-9657.2022.v11i2p005-016

Keywords:

GeoGebra, Automatic Proof, Euclidean Geometry, Olympics, EGMO

Abstract

This study will show the ability (or inability) of GeoGebra Discovery to deal with Euclidean geometry problems proposed at the recent European Girls' Mathematical Olympiad (Hungary, April 6-12, 2022). After a brief introduction to the context of this Olympiad and to the program GeoGebra Discovery, the problems will be described and an attempt will be made to solve them with GeoGebra Discovery, finally pointing out the relationship between the difficulties encountered by the team members and by GeoGebra, which can contribute to the establishment of criteria on the interest (and complexity) of the automatically obtained results.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bak, P. (2020): Automated generation of planar geometry Olympiad problems. Master Thesis. Pavol Josef Šafárik University in Košice.

Espinoza, J.; Lupiáñez, J.L.; Segovia, I. (2022): A Study of the Complexity of Problems Posed by Talented Students in Mathematics. Mathematics,10,1841. https:// doi.org/10.3390/math10111841

European Girls’ Mathematical Olympiad. [EGMO] (April 26, 2022). https://www.egmo.org

European Girls’ Mathematical Olympiad 2022. [EGMO2022] (April 26, 2022). https://www.egmo.org/egmos/egmo11/

Gao, H.; Li, J.; Cheng J.: (2019): Measuring Interestingness of Theorems in Automated Theorem Finding by Forward Reasoning Based on Strong Relevant Logic. In: 2019 IEEE International Conference on Energy Internet (ICEI), pp. 356–361, doi:10.1109/ICEI.2019.00069.

Hanna, G.; Yan, X. (2021): Opening a discussion on teaching proof with automated theorem provers. For the Learning of Mathematics 41(3):42--46.

Kovács, Z.: GeoGebra Discovery. A GitHub project. (April 26, 2022). https://github.com/kovzol/geogebra-discovery.

Problems: European Girls’ Mathematical Olympiad 2022, [Problems:EGMO2022], 2022). https://www.egmo.org/egmos/egmo11/solutions.pdf

Quaresma, P.; Santos, V.; Graziani, P.; Baeta, N. (2020): Taxonomy of geometric problems. Journal of Symbolic Computation 97, 31–55.

Quaresma, P.; Santos, V. (2022): Four Geometry Problems to Introduce Automated Deduction in Secondary Schools. In: J. Marcos, W. Neuper and P. Quaresma (Eds.): Theorem Proving Components for Educational Software 2021 (ThEdu’21): EPTCS 354, 2022, pp. 27-42, http://eptcs.web.cse.unsw.edu.au/paper.cgi?ThEdu21.3

Real Sociedad Matemática Española. Comisión de Olimpiadas. [RSME], (April 26, 2022). https://www.rsme.es/la-sociedad/organizacion-interna/comisiones-comites-y-grupos/comision-de-olimpiadas/

Real Sociedad Matemática Española: European Girls’ Mathematical Olympiad. [RSME-EGMO], (April 26, 2022). https://www.rsme.es/european-girls-mathematical-olympiad/

Recio, T.; Van Vaerenbergh, S.; Vélez, M. P. (2020). Herramientas de Razonamiento Automático en GeoGebra: qué son y para qué sirven. Unión, Revista Iberoamericana de Educación Matemática. Año XVI - Número 59. Agosto 2020, páginas 08-15. https://union.fespm.es/index.php/UNION/article/view/202

Santos, V.; Baeta, N.; Quaresma, P. (2019): Geometrography in Dynamic Geometry. The International Journal for Technology in Mathematics Education, vol. 26, no. 2, June 2019, pp. 89—96.

Spanish Team. European Girls’ Mathematical Olympiad 2022. [Spanish Team:EGMO2022] (April 26, 2022). https://www.egmo.org/egmos/egmo11/countries/country45/

Downloads

Published

2022-11-12

How to Cite

Ariño-Morera, M. B. . (2022). GeoGebra Discovery at EGMO 2022. Journal of the GeoGebra International Institute of São Paulo, 11(2), 005–016. https://doi.org/10.23925/2237-9657.2022.v11i2p005-016

Issue

Section

Artigos