Deterministic chaos of the elastic pendulum: a study using GeoGebra

Authors

  • Eliane Pereira Universidade Federal do Sul e Sudeste do Pará, Instituto de Engenharia do Araguaia, Santana do Araguaia, PA
  • André Sandmann Universidade Tecnológica Federal do Paraná, Departamento de Matemática e Estatística, Medianeira, PR

DOI:

https://doi.org/10.23925/2237-9657.2024.v13i2p062-081

Keywords:

Elastic pendulum, chaotic systems, GeoGebra

Abstract

In this work, Lagrange’s equations of motion for the elastic pendulum were derived. The resulting equations are solved numerically using GeoGebra. From the numerical solutions, an applet was built in GeoGebra that allows studying the behavior of the elastic pendulum through phase spaces, trajectory and the numerical solution. An animation of the system was also built to visualize the movement of the spring pendulum. The applet was used to investigate the dynamics of the elastic pendulum, which presents very interesting dynamics as it is non-integrable. Firstly, the system decoupling limits were analyzed, in these limits the system is non-chaotic. The sensitivity to initial conditions was studied when the spring and the pendulum are in resonance, in which case most of the initial conditions lead to chaotic trajectories.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alligood, K. T., Sauer, T. D., Yorke, J. A., & Crawford, J. D. (1997). Chaos: an introduction to dynamical systems. Physics Today, 50(11), 67-68. (1998).

Calvão, A. M., & Penna, T. J. P. (2015). The double pendulum: a numerical study. European Journal of Physics, 36(4), 045018.

Clemente-López, D., Tlelo-Cuautle, E., de la Fraga, L. G., de Jesús Rangel-Magdaleno, J., & Munoz-Pacheco, J. M. (2022). Poincaré maps for detecting chaos in fractional-order systems with hidden attractors for its Kaplan-Yorke dimension optimization. AIMS Math, 7(4), 5871-5894.

de Souza Siena, M. C. (2022). Construção do Sistema Solar Utilizando o software GeoGebra. Revista do Instituto GeoGebra Internacional de São Paulo, 11(1), 101-117.

Hohenwarter, M. (2001) https://www.geogebra.org/, acessado em 10/01/2023.

Lemos, N. A. (2013). Mecânica analítica. Editora Livraria da Física.

Leven, R. W., & Koch, B. P. (1981). Chaotic behaviour of a parametrically excited damped pendulum. Physics Letters A, 86(2), 71-74.

Nenuwe, N. O. (2019). Application of Lagrange equations to 2D double spring-pendulum in generalized coordinates. Ruhuna Journal of Science, 10(2).

Nós, R. L., & Albon, A. J. D. (2022). Construindo tesselações hiperbólicas no disco de Poincaré com o GeoGebra. Revista do Instituto GeoGebra Internacional de São Paulo, 11(2), 17-32.

Nós, R. L., & Lago, R. C. (2020). Investigando teoremas de geometria plana com o GeoGebra Investigating plane geometry theorems with GeoGebra. Revista do Instituto GeoGebra Internacional de São Paulo, 9(3), 15-29.

Paz, L., & Lopes, M. (2018). Construção de ferramentas para divisão de polinômios, implementadas com o JavaScript, no software GeoGebra. Revista do Instituto GeoGebra Internacional de São Paulo, 7(2), 80-94.

Pereira, E. (2023). https://www.geogebra.org/classic/vctzv6vv

Pereira, E. (2021). Experiência de baixo custo para determinar a forma da superfície de um líquido em rotação usando o smartphone. Revista Brasileira de Ensino de Física, 43.

Tufillaro, N. B., Abbott, T. A., & Griffiths, D. J. (1984). Swinging Atwood’s machine. American Journal of Physics, 52(10), 895-903.

Wang, F., Bajaj, A. K., & Kamiya, K. (2005). Nonlinear normal modes and their bifurcations for an inertially coupled nonlinear conservative system. Nonlinear Dynamics, 42, 233-265.

Published

2024-11-18

How to Cite

Pereira, E., & Sandmann, A. . (2024). Deterministic chaos of the elastic pendulum: a study using GeoGebra. Journal of the GeoGebra International Institute of São Paulo, 13(2), 062–081. https://doi.org/10.23925/2237-9657.2024.v13i2p062-081