Geometrization of the Pythagorean Theorem and its generalization as Polya's Theorem
DOI:
https://doi.org/10.23925/2237-9657.2025.v14i1p058-075Keywords:
Pythagorean theorem, Geometry, Polya theorem, AreasAbstract
Pythagoras Theorem is considered one of the most important and well-known theorems in Mathematics due to its wide applications in solving problems related to geometry and to sciences. Currently, in most situations, especially in Basic Education, its approach occurs essentially via its algebraic form, with little emphasis on geometry. The article, which is part of a master's thesis, aims to present an approach to prove Pythagoras Theorem focusing on its geometrization, using areas of similar figures, via constructions performed by the GeoGebra software. Additionally, it presents a proof and interactive constructions of Polya's Theorem, which is one of the generalizations of the Pythagoras Theorem. Such approach may arouse more interest in these results, as they provide a significant conceptual and visual understanding of the theorems, instead of their purely algebraic versions.
References
ALENCAR, H. SANTOS, W., NETO, G. S. Geometria diferencial de curvas no R2. Coleção Coletâneas de Matemática; 04, SBM, Rio de Janeiro: 2020.
BRASIL. Ministério da Educação. Base nacional comum curricular. Brasília, DF: MEC, 2018. Disponível em: http://basenacionalcomum.mec.gov.br/. Acesso em: 17 mar. 2025.
BENEDETTI, M.; GIL, P. P.; TECHERA, S. I. C. Atividades em geometria usando recortes: parte 1-teorema de Pitágoras. Cadernos de matemática e estatística. Série B, Trabalho de apoio didático. Porto Alegre, 1993.
CUOCO, Al; GOLDENBERG, E. Paul; MARK, June. Habits of mind: An organizing principle for mathematics curricula. The Journal of Mathematical Behavior, v. 15, n. 4, p. 375-402, 1996.
GRAVINA, M. Al. et al. Geometria dinâmica na escola. Matemática, Mídias Digitais e Didática–tripé para a formação de professores de Matemática. Porto Alegre. Cap, v. 2, p. 26-45, 2011.
LEIVAS, J. C. P. Investigando o último nível da teoria de Van Hiele com alunos de pós-graduação – a generalização do teorema de Pitágoras. Vidya, v. 37, n. 2, p. 515-531, 2017.
LIMA, E.L Meu Professor de Matemática e outras histórias. 6a edição. Rio de Janeiro: SBM, 2012.
LIMA, E. L. Coordenadas no Plano. Rio de Janeiro: SBM, 2013.
LIMA, E. L. Espaços Métricos. Rio de Janeiro: IMPA - Projeto Euclides, 2020.
MATHIAS, C. V.; SILVA, H. A. da; LEIVAS, J. C. P. Provas sem palavras, visualização, animação e GeoGebra. Revista do Instituto GeoGebra Internacional de São Paulo, Pontifícia Universidade Católica de São Paulo, v. 8, n. 2, p. 62–77, 2019.
OLIVEIRA, I. M. S. Desalgebrização do Teorema de Pitágoras e sua extensão com o Teorema de Pólya. Dissertação (Mestrado em Matemática - Profmat) – Universidade Federal de Campina Grande, Campina Grande - Paraíba, p.170. 2023.
POLYA, G. How to solve it. Princeton, NJ: Princeton University Press. 1973.
POLYA, George. Generalization, specialization, analogy. The American Mathematical Monthly, v. 55, n. 4, p. 241-243, 1948.
RATNER, B. Pythagoras: Everyone knows his famous theorem, but not who discovered it 1000 years before him. Journal of Targeting, Measurement and Analysis for Marketing, v. 17, p. 229-242, 2009.
STRICK, H. K. Mathematics is Beautiful. Springer Berlin Heidelberg, 2021. https://doi.org/10.1007/978-3-662-62689-4_17
SINGH, J. P. Concept of Pythagorean Theorem's New Proof and Pythagorean's Triple With Ancient Vedic Investigation. International Journal Of Scientific Research And Education, v. 5, n. 04, p. 6326-38, 2017.
WAGNER, E. Teorema de Pitágoras e áreas. Programa de Iniciação Cientifica da OBMEP, 2010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of the GeoGebra International Institute of São Paulo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Submission, processing, and publication of articles sent to the journal and registration of the DOI at Crossref is free of charge.
Authors retain their copyright and grant the journal the right of first publication of their article, which is simultaneously licensed under a Creative Commons - Attribution 4.0 International license CC BY that allows others to share the article by acknowledging its authorship and initial publication by the journal.
The GeoGebra journal encourages its authors to register their work with information and communication management systems aimed at researchers, such as Academia.edu, Mendeley, ResearchGate, etc.
10.23925