GeoGebra e o método de Briot & Bouquet para a resolução gráfica de equações cúbicas.
Keywords:
GeoGebra, equações cúbicas, Briot e BouquetAbstract
Em meados do século XIX, os matemáticos franceses Briot e Bouquet propuseram um intrigante método gráfico para resolução de equações cúbicas “depressed” – equações do 3º grau que não possuem o termo quadrático. A construção geométrica proposta é simples, entretanto baseia-se numa álgebra bastante engenhosa. Propomos aqui a comprovação e experimentação gráfica do método através de uma sequência didática utilizando o software GeoGebra. Apresentamos ainda o engenhoso desenvolvimento algébrico que resultou nesse método gráfico de determinação de raízes reais para uma equação cúbica do tipo x3 + px + q = 0 onde p e q são números reais. O método afirma que tais soluções se resumem nas abscissas dos pontos de interseção da parábola y = x2 com a circunferência de centro em C(-q/2, 1-p/2) e que contém a origem.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Submission, processing, and publication of articles sent to the journal and registration of the DOI at Crossref is free of charge.
Authors retain their copyright and grant the journal the right of first publication of their article, which is simultaneously licensed under a Creative Commons - Attribution 4.0 International license CC BY that allows others to share the article by acknowledging its authorship and initial publication by the journal.
The GeoGebra journal encourages its authors to register their work with information and communication management systems aimed at researchers, such as Academia.edu, Mendeley, ResearchGate, etc.