Students' conceptions

an introduction to a formal characterization

Authors

  • Nicolas Balacheff Directeur de recherche CNRS émérite, Equipe MeTAH, Modèles et Technologies pour l'Apprentissage Humain Laboratoire d’informatique de Grenoble Univ. Grenoble Alpes, CNRS, Grenoble INP https://orcid.org/0000-0001-7084-3482
  • Nathalie Gaudin La Prépa des INP, Grenoble INP, UGA Institut d'ingénierie et de management https://orcid.org/0000-0002-5719-1632
  • Saddo Ag Almouloud Pontifícia Universidade Católica de São Paulo https://orcid.org/0000-0002-8391-7054
  • Méricles Tadeu Moretti Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.23925/1983-3156.2022v24i1p722-769

Keywords:

Conception, Formal characterization, Students

Abstract

We investigate in this paper the complexity of modeling students knowing of mathematics under the constraints of acknowledging both their possible lack of coherency and their local efficiency. For this purpose, we propose a formalization of the notion of “conception” as a possible tool to answer the epistemological problem we identify. We apply then this approach to the study of the possible conceptions of “function”, from an historical and then an epistemic point of view. We report the result of a case study in order to illustrate the benefit we expect from this approach. The notions of “conception”, “knowing” and “concept” are then related the one to the other within the model presented.

Metrics

Metrics Loading ...

Author Biographies

Nicolas Balacheff, Directeur de recherche CNRS émérite, Equipe MeTAH, Modèles et Technologies pour l'Apprentissage Humain Laboratoire d’informatique de Grenoble Univ. Grenoble Alpes, CNRS, Grenoble INP

Professeur  d´Université

Saddo Ag Almouloud, Pontifícia Universidade Católica de São Paulo

Doutorado em Mathematiques et Applications - Université de Rennes 1 em 1992 - frança. Assistente doutor - pontifícia universidade católica de São Paulo, e assistente doutor da fundação Santo André. Consultor ad hoc da fundação de amparo a pesquisa do estado de são Paulo, da capes, bolsista pesquisador de CNPQ, foi coordenador do programa de estudos pós-graduados em educação matemática da PUC-SP de 2007 à 2009 e de 01/08/2013 a 31/07/2017. Atualmente é vice coordenador do referido programa. Foi coordenador do curso de especialização em educação matemática da PUC-SP de 2006 a 2017. Publicou mais de 50 artigos em periódicos especializados e mais de 83 trabalhos em anais de eventos. Possui 5 capítulos de livros e 12 livros publicados. Possui 1 software e mais de 62 itens de produção técnica. Participou de vários eventos no exterior e mais de 112 no brasil. Orientou mais 77 dissertações de mestrado e teses de doutorado na área de educação matemática entre 1996 e 2016. Participou de mais de 200 bancas de defesa de dissertações e doutorados. Coordenou mais de 5 projetos de pesquisa. Atualmente coordena 2 projetos de pesquisa. Atua na área de educação, com ênfase em educação matemática. É avaliador do prêmio victor civita desde 2013. Em suas atividades profissionais interagiu com mais 70 colaboradores em coautorias de trabalhos científicos. Em seu currículo lattes os termos mais frequentes na contextualização da produção científica, tecnológica e artístico-cultural são: ensino-aprendizagem, geometria, educação matemática, matemática, demonstração, ensino básico, formação de professores, geometria dinâmica, TIC.

Méricles Tadeu Moretti, Universidade Federal de Santa Catarina

Doutorado em Didática da Matemática

References

Ambrosio U. d’ (1993) Etnomatemática. São Paulo: Editora Atica. Aebli H. (1963) Didactique psychologique. Neuchâtel : Delachaux et Niestlé.

Arsac G., Balacheff N., Mante M. (1992) Teacher's role and reproducibility of didactical situations. Educational Studies in Mathematics 23 (5) 5-29.

Artigue M. (1991) Épistémologie et didactique. Recherches en didactique des mathématiques. 10(2/3) 241-285.

Artigue M. (1992) Functions from an algebraic and graphic point of view: cognitive difficulties and teaching practices. In: Dubinsky E., Harel G. (eds.) The concept of Function. (MAA Notes Vol. 25, 109-132). Mathematical Association of America.

Bachelard G. (1938) La formation de l’esprit scientifique. Paris : Vrin.

Balacheff N. (1987) Processus de preuves et situations de validation. Educational Studies in Mathematics

(2) 147-176.

Balacheff N. (1995) Conception, connaissance et concept. In : Grenier D. (ed.) Didactique et technologies cognitives en mathématiques, séminaires 1994-1995 (pp.219-244). Grenoble : Université Joseph Fourier.

Balacheff N. (1995a) Conception, propriété du système sujet/milieu. In : Noirfalise R., Perrin-Glorian M.-J. (eds.) Actes de la VII° Ecole d’été de didactique des mathématiques (pp.215-229). Clermont- Ferrand : IREM de Clermont-Ferrand.

Balacheff N. (1998) Construction of meaning and teacher control of learning. In : Tinsley D. J., Johnson D. C. (eds.) Information and Communication Technologies in School Mathematics (pp. 111-120). Chapman & Hall.

Bourdieu P. (1990) The logic of practice. Stanford, CA: Stanford University Press [English translation of : Le sens pratique. Paris : Les éditions de Minuit. 1980]

Breidenbach D., Dubinsky, Hawks J., Nichols D. (1992) Development of the process conception of function. Educational Studies in Mathematics 23, 247-285.

Brousseau G. (1997) Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic Publishers.

Bell A., Janvier C. (1981) The interpretation of graph representing situations. For the Learning of Mathematics 2(1), 34-42.

Castela C. (1995) Apprendre avec et contre ses connaissances antérieures. Recherches en didactique des mathématiques. 15(1) 7-47.

Confrey J. (1986) “Misconceptions” accross subject matters: charting the course from a constructivist perspective. Annual meeting of the American Educational Research Association. (unpublished manuscript).

Confrey J. (1990) A review of the research on students conceptions in mathematics, science, and programming. In: Courtney C. (ed.) Review of research in education. American Educational Research Association 16, pp. 3-56.

DeMarois P., Tall D. (1999) Function: Organizing principle or Cognitive Root ? Proceedings of the twenty third international conference for the psychology of mathematics education (Vol. 2, pp. 257- 264). Haifa, Israel.

Dhombres J. (1988) Un Texte d'Euler sur les Fonctions Continues et les Fonctions Discontinues, Véritable Programme d'Organisation de l'Analyse au 18ième Siècle. Cahier du Séminaire d'Histoire des Mathématiques, Université Pierre et Marie Curie, Paris.

Douady R. (1985) The interplay between different settings. Tool-object dialectic in the extension of mathematical ability. In: Streefland L. (ed.) Proceedings of the ninth international conference for the psychology of mathematics education (Vol. 2, pp. 33-52). Utrecht: State University of Utrecht.

Dubinsky E., Harel G. (1992) The nature of the process conception of function. In: Dubinsky E., Harel G. (eds.) The concept of Function. (MAA Notes Vol. 25, 195-213). Mathematical Association of America.

Edwards C. H. Jr. (1979) The historical development of calculus. Berlin: Springer-Verlag.

Even R. (1998) Factors involved in linking representations of functions. Journal of Mathematical Behavior 17(1), 105-121.

Furth H. G. (1969) Piaget and Knowledge. Theoretical foundations. NJ: Prentice-Hall

Gaudin N. (1999) Caractérisation des conceptions du concept de fonction. Mémoire de DEA, Laboratoire Leibniz, Grenoble

Gaudin N. (2002) Conceptions de fonction et registres de représentation, étude de cas au lycée. For the Learning of Mathematics (in press).

Glasersfeld E. von (1984) An introduction to radical constructivism. In : Watzlawick P. (ed.) The invented reality (pp. 17-40). New York : Norton.

Kleiner I. (1989) Evolution of the function concept: a brief survey. The College Mathematics Journal

(4) 282-300.

Kline M. (1972) Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press.

Lave J. (1988) Cognition into practice. Cambridge: Cambridge University Press.

Mesa V. M. (2001) Prototypical uses of function present in seventh- and eight- grade textbooks from fifteen countries. In: van den Heuvel-Panhuizen M. (ed.) Proceedings of the 25th conference of the international group for the Psychology of Mathematics Education (Vol. 3 pp. 367-374). Utrecht, state University of Utrecht.

Monna A. F. (1972), The Concept of Function in the 19th and 20th Centuries, in Particular with Regard to Discussions between Baire, Borel and Lebesgue. Archive for History of Exact Sciences 9 (1) 57-84

Nuñes T., Carraher D., Schliemann A. (1983) Mathematics in streets and schools. Cambridge: Cambridge University Press.

Pichot A. (1994) Pour une approche naturaliste de la connaissance. Lekton 4(2) 199-241.

Rabardel P. (1995) Qu’est-ce qu’un instrument ? Les dossiers de l’Ingénierie éducative. 19, 61-65.

Resnick L., Collins A. (1994) Cognition and Learning. Pre-print. Learning Research and Development Center. University of Pittsburgh.

Robert A. (1992) Problèmes méthodologiques en didactique des mathématiques. Recherches en didactique des mathématiques. 12(1) 33-58.

Robert A. (1993) Présentation du point de vue de la didactique des mathématiques sur les métaconnaissances. In : Baron M., Robert A. (eds.) Métaconnaissances en IA, en EIAO et en didactique des mathématiques. RR LAFORIA 93/18. (pp.5-18). Paris: Institut Blaise Pascal.

Salin M.-H. (1976) Le rôle de l’erreur dans l’apprentissage des mathématiques de l’école primaire.

IREM de Bordeaux.

Sfard A. (1991) On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics 22, 1-36.

Shoenfeld A. (1985) Mathematical Problem Solving. Orlando: Academic Press.

Shoenfeld A. (ed) (1987) Cognitive Science and Mathematics Education. Hillsdale : Lawrence Erlbaum Associates.

Sierpinska A. (1989) On 15-17 years old students’ conceptions of functions, iteration of functions and attractive fixed points. Institut de Mathématiques, preprint 454. Varsovie: Académie des Sciences de Pologne.

Sierpinska A. (1992) On understanding the notion of function. In: Dubinsky E., Harel G. (eds.) The concept of Function. (MAA Notes Vol. 25, 25-59). Mathematical Association of America.

Smith D. E. (1958) History of mathematics. (Vol. II, esp. chap X). New York: Dover Publications Inc. Schwingendorf K., Hawks J., Beineke J. (1992) Horizontal and vertical growth of the students'

conception of function. In: Dubinsky E., Harel G. (eds.) The concept of Function. (MAA Notes Vol. 25, 133-152). Mathematical Association of America.

Stewart J. (1994) un système cognitif sans neurones : les capacités d’adaptation, d’apprentissage et de mémoire du système immunitaire. Intellectika 18, 15-43.

Tall D. (1996) Functions and calculus. In: Bishop A. et al. (eds.) International Handbook of Mathematics Education (pp. 289-326). Dordrecht: Kluwer Academic Publishers.

Thurston W. P. (1994) On proof and progress in mathematics. Bulletin of the American Mathematical Society 30(2) 161-177.

Vergnaud G. (1981) Quelques orientations théoriques et méthodologiques des recherches françaises en didactique des mathématiques. Recherches en didactique des mathématiques. 2(2) 215-231.

Vergnaud G. (1991) La théorie des champs conceptuels. Recherches en didactique des mathématiques.

(2/3) 133-169.

Vinner S. (1983) Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology 14, 293-305

Vinner S. (1987) Continuous functions - images and reasoning in college students. In: Bergeron J. C., Herscovics N., Kieran C. (eds.) Proceedings of the Eleventh International Conference for the Psychology of Mathematics Education (Vol. 3 pp. 177-183). Montréal, Canada: Université de Montréal.

Vinner S. (1992) The function concept as a prototype for problems in mathematics education. In: Dubinsky E., Harel G. (eds.) The concept of Function. (MAA Notes Vol. 25, 195-213). Mathematical Association of America.

Vinner S., Dreyfus T. (1989) Images and definition for the concept of function. Educational Studies in Mathematics 20(4) 356-366.

Youschkevitch A. P.(1976), The Concept of Function up to the Middle of the19th Century. Archives for History of Exact Sciences 16 (1) 37-85.

Published

2022-04-22

How to Cite

BALACHEFF, N.; GAUDIN, N.; ALMOULOUD, S. A.; MORETTI, M. T. Students’ conceptions: an introduction to a formal characterization. Educação Matemática Pesquisa, São Paulo, v. 24, n. 1, p. 722–769, 2022. DOI: 10.23925/1983-3156.2022v24i1p722-769. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/57659. Acesso em: 20 dec. 2024.

Issue

Section

Tradução de artigo ou capítulo de livro