An analysis of similarity concept presented in textbooks in Brazil and the United States

Authors

  • Rúbia Barcelos Amaral São Paulo State University
  • Karen Hollebrands North Carolina State University

DOI:

https://doi.org/10.23925/1983-3156.2023v25i2p356-393

Keywords:

Textbook analysis, Mathematical tasks, International textbook comparison

Abstract

This paper is a product of a research that investigates the presence of Geometry in textbooks, that is part of project of a Theorem – Reflection on Geometry and Mathematics Education research group. The focus here is to present results of the international study: how textbooks present the concept of similarity? For this, a qualitative research were developed and textbooks of three collections from Brazil and three from United States were examined. A synthesis of the literature related to the search for textbooks and the teaching and learning of the concept of similarity is presented, and the theoretical framework explores similarity as positioned at the crossroads of geometry and number to describe the ways in which different textbooks approach it. Sequence of topics and tasks presented in each textbook are described and then comparisons are made. There were theorems and problem types that were presented consistently across all textbooks, but differences in expectations related to proof and the use of coordinates and geometric transformations were identified. Only textbooks in the US included the use of transformations and coordinates and placed more emphasis on formal proof. Implications for the teaching and learning of similarity are provided

Metrics

Metrics Loading ...

Author Biographies

Rúbia Barcelos Amaral, São Paulo State University

Livre-Docente em Educação Matemática

Karen Hollebrands, North Carolina State University

Ph.D., Curriculum & Instruction with emphasis in Mathematics Education

References

Author 1; Author 2. (2017).

Brazil (2017). Base Nacional Comum Curricular. Educação é a base. Ministério da Educação.<http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdf>. Access in: 17/08/2021.

Carter, John A.; Cuevas, Gilbert J.; Day, Roger; Malloy, Carol E. (2012). Integrated Math. Vol. 2. Columbus, OH: McGraw Hill.

Centurión, Marilia; Jakubovic, José (2012). Matemática: teoria e contexto. São Paulo: Saraiva.

Chazan, Daniel. (1987). Similarity: Unraveling a conceptual knot with the aid of technology. In Proceedings of the Eleventh International Conference of the Psychology of Mathematics Education (pp. 3–9). Montreal: PME.

Choppin, A. (2004). Educação e Pesquisa. São Paulo. n.3, v.30. https://files.eric.ed.gov/fulltext/ED383532.pdf>.

Choppin, Alain. (2004). História dos livros e das edições didáticas: sobre o estado da arte. Educação e Pesquisa, v.30, n.3, p. 549-566, set./dez. <https://doi.org/10.1590/S1517-97022004000300012>.

Costa, Jéssica Serra Corrêa & Bittar, Marilena (2019). A teoria antropológica do didático no estudo do cálculo mental. Educação Matemática Pesquisa. n.5 v.21. <https://doi.org/10.23925/1983-3156.2019v21i5p445-454>.

Cox, Dana. (2013). Similarity in middle school mathematics: at the crossroads of geometry and number. Mathematical Thinking and Learning, 15(1), 3–23. <https://doi.org/10.1080/10986065.2013.738377>

Cox, Dana; Lo, Jane-Jane. (2014). Detecting distortion: bridging visual and quantitative reasoning on similarity tasks. Mathematics Education Research Journal. 26, p.1-23. <https://link.springer.com/article/10.1007%2Fs13394-013-0108-1>.

Fan, Lianghuo. (2013). Textbook research as scientific research: Towards a common ground on issues and methods of research on mathematics textbooks. ZDM – Int J Math Educ. 45, 765–777. <https://link.springer.com/article/10.1007%2Fs11858-013-0530-6>.

Freeman, Donald J.; Porter, Andrew C. (1989). Do textbooks dictate the content of Mathematics instruction in Elementary Schools? American Educational Research Journal, 3(26). Fall. <https://doi.org/10.3102/00028312026003403>

Guimarães, Gilda; Gitirana, Veronica; Cavalcanti, Milka; Marques, Mabel. (2007). Livros didáticos de matemática nas séries iniciais: análise das atividades sobre gráficos e tabelas. In: Encontro Nacional de Educação Matemática. Anais. Belo Horizonte. https://www.researchgate.net/profile/GildaGuimaraes/publication/305116276_Livros_Didaticos_de_Matematica_nas_Series_Iniciais_analise_das_atividades_sobre_graficos_e_tabelas/links/578cda5408ae59aa668149ce/Livros-Didaticos-de-Matematica-nas-Series-Iniciais-analise-das-atividades-sobre-graficos-e-tabelas.pdf>.

Hart, Kim M. (1984). Ratio: children’s strategies and errors. A report of the strategies and errors in secondary mathematics project. London: NFER-Nelson.

Hirsch, Christian; Fey, James; Hart, Eric; Schoen, Harold; Watkins, Ann. (2015). Core-Plus Mathematics Contemporary Mathematics in Context. Columbus, OH: McGraw Hill.

Johnsen, Egil B. (1993). Textbooks in the kaleidoscope: A critical survey of literature and research on educational texts. Oslo: Scandinavian University Press.

Jones, Dustin; Tarr, James. (2007). An examination of the levels of cognitive demand required by probability tasks in middle grades mathematics textbooks. Statistics Education Research Journal. 6. 4-27. <https://www.academia.edu/26156030/An_Examination_of_the_Levels_of_Cogitive_Demand_Required_by_Probability_Tasks_in_Middle_Grades_Mathematics_TEXTBOOKS2?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page>.

Kanold, Timothy D.; Burger, Edward B.; Dixon, Juli K.; Larson, Matthew, R.; Leinwand, Steven J. (2015). Integrated mathematics. Orlando, FL: Houghton Mifflin Harcourt.

Kaput, James J.; West, Maria M. (1994). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. In: The development of multiplicative reasoning in the learning of mathematics (pp. 235-287). Albany: State University of New York Press. <https://psycnet.apa.org/record/1994-98042-005>.

Lajolo, Marisa. (1996). Livro didático e qualidade de ensino. In: Em aberto. Ministério da Educação e Desporto SEDIAE/INEP, v.16, n.69. <https://doi.org/10.24109/2176-6673.emaberto.16i69.2061>.

Lamon, Susan J. (1993). Ratio and proportion: Connecting content and children’s thinking. Journal for Research in Mathematics Education, 24, 41-61. <https://doi.org/10.5951/jresematheduc.24.1.0041>.

Lemos, Maria Patrícia F. (2006). O estudo do tratamento da informação nos livros didáticos das séries iniciais do ensino fundamental. Ciência e Educação, v.12, n.2, p.171-184. <https://doi.org/10.1590/S1516-73132006000200005>.

Lehrer, Richard; Strom, Dolores; Confrey, Jere. (2002). Grounding metaphors and inscriptional resonance: Children's emerging understanding of mathematical similarity. Cognition and Instruction, 20 (3), 359-398. <https://doi.org/10.1207/S1532690XCI2003_3>.

Leonardo, Fabio.M. (2010). Projeto Araribá: Matemática. São Paulo: Moderna.

Lo, Jane-Jane; Cox, Dana; Mingus, Tabitha. (2006). A conceptual-based curricular analysis of the concept of similarity. In Proceedings of the Eleventh International Conference of the Psychology of Mathematics Education (pp. 3–9). v.2, p.222-228.

Silva, Ezequiel T. (1996). Livro didático: do ritual de passagem à ultrapassagem. In: Em aberto. Ministério da Educação e Desporto SEDIAE/INEP, v.16, n.69. <https://doi.org/10.24109/2176-6673.emaberto.16i69.%25p>.

Silva, Maria Célia L. (2005). A geometria escolar ontem e hoje: algumas reflexões sobre livros didáticos de Matemática. Revista Iberoamericana de Educación Matemática. n.3, Septiembre. p.73-85. <http://funes.uniandes.edu.co/14570/>.

Souza, Joamir R; Pataro, Patrícia R.M. (2012). Vontade de saber. São Paulo: FTD.

Swoboda Ewa; Tocki, Jerzy. (2002). How to prepare prospective teachers to teach mathematics: some remarks. Paper presented at the Second International Conference on the Teaching of Mathematics (at the undergraduate level), Crete, Greece. <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.9549&rep=rep1&type=pdf>.

Tall, David. O.; Vinner, Shlomo. (1981). Concept image and concept definition in mathematics, with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. <https://link.springer.com/article/10.1007/BF00305619>.

Valverde, Gilbert A.; Bianchi, Leonard. J; Wolfe, Richard G.; Schimdt, William H.; Houang, Richard T. (2002). According to the book: using TIMSS to investigate the translation of policy into practice through the world of textbooks. Dordrecht: Kluwer.

Van den Brink, Jan; Streefland, Leen. (1979). Young children (6–8) - Ratio and proportion. Educational Studies in Mathematics, 10(4), 403–420. <https://www.jstor.org/stable/3481826?casa_token=TqqAtIfRYWIAAAAA%3AjRNKhMhXcv59XUtg5Nfo5wjS4BpLdgAdYggfNT0QMVshvHeabAnhNJOHh0IoexFuFWP_UhcPLEwrI7Vml0ORAyuAtHe1KSdcI31alVTpiSOYmo_OOE&seq=1#metadata_info_tab_contents>.

Downloads

Published

2023-08-20

How to Cite

AMARAL, R. B.; HOLLEBRANDS, K. An analysis of similarity concept presented in textbooks in Brazil and the United States. Educação Matemática Pesquisa, São Paulo, v. 25, n. 2, p. 356–393, 2023. DOI: 10.23925/1983-3156.2023v25i2p356-393. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/60974. Acesso em: 25 nov. 2024.

Issue

Section

SPECIAL ISSUE - CELEBRATION OF THE 25TH ANNIVERSARY OF THE JOURNAL EDUCAÇÃO MAT