une analyse du concept de similitude présenté dans les manuels au Brésil et aux États-Unis

Auteurs

  • Rúbia Barcelos Amaral São Paulo State University
  • Karen Hollebrands North Carolina State University

DOI :

https://doi.org/10.23925/1983-3156.2023v25i2p356-393

Mots-clés :

Analyse de manuels, Similitude, Tâches mathématiques, Comparaison internationale de manuels

Résumé

Cet article est le résultat d'une recherche qui enquête sur la présence de la géométrie dans les manuels. Il s'agit ici de présenter les résultats de l'étude dont la question directrice est : comment les manuels présentent-ils le concept de similarité ? Pour cela, des manuels de trois collections au Brésil et trois aux États-Unis ont été examinés. Une synthèse de la littérature liée à la recherche sur les manuels et à l'enseignement et à l'apprentissage du concept de similarité est présentée, et le cadre théorique explore la similarité telle qu'elle se situe au carrefour de la géométrie et du nombre pour décrire la manière dont différents manuels l'abordent. La séquence des sujets et des tâches présents dans chaque livre est décrite, puis des comparaisons sont faites. On a trouvé des théorèmes et des types de problèmes présentés de manière cohérente dans tous les manuels, mais des différences dans les attentes liées à la preuve et à l'utilisation des coordonnées et des transformations géométriques ont été identifiées. Seuls les manuels aux États-Unis incluaient l'utilisation de transformations et de coordonnées et mettaient davantage l'accent sur la preuve formelle. Les implications pour l'enseignement et l'apprentissage de la similarité sont également présentées.

Métriques

Chargements des métriques ...

Bibliographies de l'auteur

Rúbia Barcelos Amaral, São Paulo State University

Livre-Docente em Educação Matemática

Karen Hollebrands, North Carolina State University

Ph.D., Curriculum & Instruction with emphasis in Mathematics Education

Références

Author 1; Author 2. (2017).

Brazil (2017). Base Nacional Comum Curricular. Educação é a base. Ministério da Educação.<http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdf>. Access in: 17/08/2021.

Carter, John A.; Cuevas, Gilbert J.; Day, Roger; Malloy, Carol E. (2012). Integrated Math. Vol. 2. Columbus, OH: McGraw Hill.

Centurión, Marilia; Jakubovic, José (2012). Matemática: teoria e contexto. São Paulo: Saraiva.

Chazan, Daniel. (1987). Similarity: Unraveling a conceptual knot with the aid of technology. In Proceedings of the Eleventh International Conference of the Psychology of Mathematics Education (pp. 3–9). Montreal: PME.

Choppin, A. (2004). Educação e Pesquisa. São Paulo. n.3, v.30. https://files.eric.ed.gov/fulltext/ED383532.pdf>.

Choppin, Alain. (2004). História dos livros e das edições didáticas: sobre o estado da arte. Educação e Pesquisa, v.30, n.3, p. 549-566, set./dez. <https://doi.org/10.1590/S1517-97022004000300012>.

Costa, Jéssica Serra Corrêa & Bittar, Marilena (2019). A teoria antropológica do didático no estudo do cálculo mental. Educação Matemática Pesquisa. n.5 v.21. <https://doi.org/10.23925/1983-3156.2019v21i5p445-454>.

Cox, Dana. (2013). Similarity in middle school mathematics: at the crossroads of geometry and number. Mathematical Thinking and Learning, 15(1), 3–23. <https://doi.org/10.1080/10986065.2013.738377>

Cox, Dana; Lo, Jane-Jane. (2014). Detecting distortion: bridging visual and quantitative reasoning on similarity tasks. Mathematics Education Research Journal. 26, p.1-23. <https://link.springer.com/article/10.1007%2Fs13394-013-0108-1>.

Fan, Lianghuo. (2013). Textbook research as scientific research: Towards a common ground on issues and methods of research on mathematics textbooks. ZDM – Int J Math Educ. 45, 765–777. <https://link.springer.com/article/10.1007%2Fs11858-013-0530-6>.

Freeman, Donald J.; Porter, Andrew C. (1989). Do textbooks dictate the content of Mathematics instruction in Elementary Schools? American Educational Research Journal, 3(26). Fall. <https://doi.org/10.3102/00028312026003403>

Guimarães, Gilda; Gitirana, Veronica; Cavalcanti, Milka; Marques, Mabel. (2007). Livros didáticos de matemática nas séries iniciais: análise das atividades sobre gráficos e tabelas. In: Encontro Nacional de Educação Matemática. Anais. Belo Horizonte. https://www.researchgate.net/profile/GildaGuimaraes/publication/305116276_Livros_Didaticos_de_Matematica_nas_Series_Iniciais_analise_das_atividades_sobre_graficos_e_tabelas/links/578cda5408ae59aa668149ce/Livros-Didaticos-de-Matematica-nas-Series-Iniciais-analise-das-atividades-sobre-graficos-e-tabelas.pdf>.

Hart, Kim M. (1984). Ratio: children’s strategies and errors. A report of the strategies and errors in secondary mathematics project. London: NFER-Nelson.

Hirsch, Christian; Fey, James; Hart, Eric; Schoen, Harold; Watkins, Ann. (2015). Core-Plus Mathematics Contemporary Mathematics in Context. Columbus, OH: McGraw Hill.

Johnsen, Egil B. (1993). Textbooks in the kaleidoscope: A critical survey of literature and research on educational texts. Oslo: Scandinavian University Press.

Jones, Dustin; Tarr, James. (2007). An examination of the levels of cognitive demand required by probability tasks in middle grades mathematics textbooks. Statistics Education Research Journal. 6. 4-27. <https://www.academia.edu/26156030/An_Examination_of_the_Levels_of_Cogitive_Demand_Required_by_Probability_Tasks_in_Middle_Grades_Mathematics_TEXTBOOKS2?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page>.

Kanold, Timothy D.; Burger, Edward B.; Dixon, Juli K.; Larson, Matthew, R.; Leinwand, Steven J. (2015). Integrated mathematics. Orlando, FL: Houghton Mifflin Harcourt.

Kaput, James J.; West, Maria M. (1994). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. In: The development of multiplicative reasoning in the learning of mathematics (pp. 235-287). Albany: State University of New York Press. <https://psycnet.apa.org/record/1994-98042-005>.

Lajolo, Marisa. (1996). Livro didático e qualidade de ensino. In: Em aberto. Ministério da Educação e Desporto SEDIAE/INEP, v.16, n.69. <https://doi.org/10.24109/2176-6673.emaberto.16i69.2061>.

Lamon, Susan J. (1993). Ratio and proportion: Connecting content and children’s thinking. Journal for Research in Mathematics Education, 24, 41-61. <https://doi.org/10.5951/jresematheduc.24.1.0041>.

Lemos, Maria Patrícia F. (2006). O estudo do tratamento da informação nos livros didáticos das séries iniciais do ensino fundamental. Ciência e Educação, v.12, n.2, p.171-184. <https://doi.org/10.1590/S1516-73132006000200005>.

Lehrer, Richard; Strom, Dolores; Confrey, Jere. (2002). Grounding metaphors and inscriptional resonance: Children's emerging understanding of mathematical similarity. Cognition and Instruction, 20 (3), 359-398. <https://doi.org/10.1207/S1532690XCI2003_3>.

Leonardo, Fabio.M. (2010). Projeto Araribá: Matemática. São Paulo: Moderna.

Lo, Jane-Jane; Cox, Dana; Mingus, Tabitha. (2006). A conceptual-based curricular analysis of the concept of similarity. In Proceedings of the Eleventh International Conference of the Psychology of Mathematics Education (pp. 3–9). v.2, p.222-228.

Silva, Ezequiel T. (1996). Livro didático: do ritual de passagem à ultrapassagem. In: Em aberto. Ministério da Educação e Desporto SEDIAE/INEP, v.16, n.69. <https://doi.org/10.24109/2176-6673.emaberto.16i69.%25p>.

Silva, Maria Célia L. (2005). A geometria escolar ontem e hoje: algumas reflexões sobre livros didáticos de Matemática. Revista Iberoamericana de Educación Matemática. n.3, Septiembre. p.73-85. <http://funes.uniandes.edu.co/14570/>.

Souza, Joamir R; Pataro, Patrícia R.M. (2012). Vontade de saber. São Paulo: FTD.

Swoboda Ewa; Tocki, Jerzy. (2002). How to prepare prospective teachers to teach mathematics: some remarks. Paper presented at the Second International Conference on the Teaching of Mathematics (at the undergraduate level), Crete, Greece. <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.9549&rep=rep1&type=pdf>.

Tall, David. O.; Vinner, Shlomo. (1981). Concept image and concept definition in mathematics, with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. <https://link.springer.com/article/10.1007/BF00305619>.

Valverde, Gilbert A.; Bianchi, Leonard. J; Wolfe, Richard G.; Schimdt, William H.; Houang, Richard T. (2002). According to the book: using TIMSS to investigate the translation of policy into practice through the world of textbooks. Dordrecht: Kluwer.

Van den Brink, Jan; Streefland, Leen. (1979). Young children (6–8) - Ratio and proportion. Educational Studies in Mathematics, 10(4), 403–420. <https://www.jstor.org/stable/3481826?casa_token=TqqAtIfRYWIAAAAA%3AjRNKhMhXcv59XUtg5Nfo5wjS4BpLdgAdYggfNT0QMVshvHeabAnhNJOHh0IoexFuFWP_UhcPLEwrI7Vml0ORAyuAtHe1KSdcI31alVTpiSOYmo_OOE&seq=1#metadata_info_tab_contents>.

Téléchargements

Publiée

2023-08-20

Comment citer

AMARAL, R. B.; HOLLEBRANDS, K. une analyse du concept de similitude présenté dans les manuels au Brésil et aux États-Unis. Educação Matemática Pesquisa, São Paulo, v. 25, n. 2, p. 356–393, 2023. DOI: 10.23925/1983-3156.2023v25i2p356-393. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/60974. Acesso em: 24 nov. 2024.

Numéro

Rubrique

NUMÉRO SPÉCIAL - COMMÉMORATION DES 25 ANS DE LA REVUE EDUCAÇÃO MATEMÁTICA PESQU