Mathematics teacher’s specialized knowledge and interpretative knowledge

weaving theoretical relations within the scope of isometric geometric transformation rotation

Authors

DOI:

https://doi.org/10.23925/1983-3156.2025v27i2p034-062

Keywords:

Mathematics teacher’s specialised knowledge, Interpretative knowledge, Interpretative knowledge, Isometric geometric transformation rotation

Abstract

To improve students' mathematical learning, it is necessary to do something different from what has been done, which implies a change in the focus of attention and prioritization on the specificities of the teacher's mathematical knowledge that underlies his/her practice. In this sense, two conceptualizations that support a specialized practice are assumed: the Mathematics Teacher’s Specialized Knowledge and the Interpretative Knowledge. Considering these two conceptualizations in an intertwined way, it’s possible to optimize assume as a starting point what students know and how they know it, listening to their mathematical thinking, to attribute meaning to the reasoning that supports their productions, in order to make more informed pedagogical decisions, enhancing students’ mathematical understanding. Since the teacher's knowledge directly impacts students' understanding, a discussion focused on the most problematic mathematical topics is essential, and the isometric geometric transformation rotation is one of such topics. Thus, we held a discussion aiming to intertwine these conceptualizations, using the context of rotation, with the perspective of deepening and refining the understanding of the content of the specificities of the knowledge of the mathematics teacher and we ended with some propositions for research and formation.

Author Biographies

Caroline Almeida Souza Silva, Universidade Estadual de Campinas - UNICAMP

Mestre em Ensino de Ciências e Matemática

Sandra Menezes, Universidade Estadual de Campinas - UNICAMP

Doutora em Ensino de Ciências e Matemática

Miguel Ribeiro, Universidade Estadual de Campinas - UNICAMP

Doutor em Didática da Matemática

References

Almeida, M. V. R., & Lopes, R. (2023). Promovendo o conhecimento especializado de futuros professores de Matemática sobre o algoritmo da divisão euclidiana. Educação Matemática Pesquisa, 25(3), 373-402.

https://doi.org/10.23925/1983-3156.2023v25i3p373-402

Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special?. Journal of teacher education, 59(5), 389-407.

https://doi.org/10.1177/0022487108324554

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74.

https://doi.org/10.1080/0969595980050102

Brasil. (2024). Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (Inep). Saeb 2023: detalhamento da população e resultados: nota técnica Nº 18/2023/CGMEB/DAEB. Brasília, DF: Inep.

https://www.gov.br/inep/pt-br/centrais-de-conteudo/acervo-linha-editorial/publicacoes-institucionais/avaliacoes-e-exames-da-educacao-basica/saeb-2023-detalhamento-da-populacao-e-resultados

Bulf, C. (2010). The effects of the concept of symmetry on learning geometry at French secondary school. In Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 726-735). France, Lyon.

https://hal.science/hal-02182374

Camacho, A. M. R., & Guerrero, L. S. (2019). Conocimiento especializado del profesor de primaria en formación: un estudio de caso de la enseñanza de la noción de razón. Quadrante, 28(2), 100-124.

https://doi.org/10.48489/quadrante.23029

Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Aguilar-Gonzáles, A., Ribeiro, M., & Muñoz-Catalán, C. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253.

https://doi.org/10.1080/14794802.2018.1479981

Dalto, J. O., & Silva, K. A. P. (2020). Portfólio de atividades de modelagem matemática como instrumento de avaliação formativa Portfolio of mathematical modeling activities as an instrument of formative assessment. Educação Matemática Pesquisa Revista do Programa de Estudos Pós-Graduados em Educação Matemática, 22(1), 371-393.

https://doi.org/10.23925/1983-3156.2020v22i1p371-393

Davis, B. (1997). Listening for differences: An evolving conception of mathematics teaching. Journal for research in mathematics education, 28(3), 355-376. https://doi.org/10.5951/jresematheduc.28.3.0355

Di Bernardo, R., Policastro, M. S., Almeida, A. R., Ribeiro, M., Melo, J. M., & Aiub, M. (2018). Conhecimento matemático especializado de professores da educação infantil e anos iniciais: conexões em medidas. Cadernos Cenpec| Nova série, 8(1).

http://dx.doi.org/10.18676/cadernoscenpec.v8i1.391

Di Martino P., Mellone M., Minichini C., & Ribeiro M. (2017). Prospective teachers’ interpretative knowledge: giving sense to subtraction algorithms. In Proceedings ERME topic conference mathematics teaching, resources and teacher professional development. ERME, Hall, 66-75.

https://hdl.handle.net/11568/876747

Di Martino, P., Mellone, M., & Ribeiro, M. (2020). Interpretative knowledge. In: Stephen Lerman. (Org.). Encyclopedia of Mathematics Education. 1ed.: Springer International Publishing, 424-428.

https://doi.org/10.1007/978-3-319-77487-9_100019-1

Duval, R. (1996). Quel cognitif retenir en didactique des mathématiques?. Recherches en didactique des mathématiques, 16(3), 349-382.

https://revue-rdm.com/1996/quel-cognitif-retenir-en/

Fiorentini, D., & Crecci, V. M. (2017). Metassíntese de pesquisas sobre conhecimentos/saberes na formação continuada de professores que ensinam matemática. ZETETIKÉ. Revista de Educação Matemática, 25(1), 164-185.

http://dx.doi.org/10.20396/zet.v25i1.8647773

Galleguillos, J., & Ribeiro, M. M. (2019). Prospective mathematics teachers’ interpretative knowledge: focus on the provided feedback. In Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education. Utrecht, Netherlands.

https://hal.science/hal-02422519/

Gomes, A. (2012). Transformações geométricas: conhecimentos e dificuldades de futuros professores. In Pinto, H., Jacinto, H., Henriques, A., Silvestre, A. & Nunes, C. (Orgs.), Atas do XXIII seminário de investigação em educação matemática (pp. 233-244). Lisboa: Associação de Professores de Matemática.

https://repositorium.sdum.uminho.pt/bitstream/1822/20835/1/Gomes_%20SIEM%20Actas_2012.pdf

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112.

https://doi.org/10.3102/003465430298487

Hollebrands, K. F. (2003). High school students’ understandings of geometric transformations in the context of a technological environment. The Journal of Mathematical Behavior, 22(1), 55-72.

https://doi.org/10.1016/S0732-3123(03)00004-X

Jakobsen, A., Mellone, M., & Ribeiro, M. (2022). A methodological approach to the development of prospective teachers' interpretative knowledge. In Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education. Bozen-Bolzano, Italy.

https://hdl.handle.net/11250/3062524

Jakobsen, A., Ribeiro, C. M., & Mellone, M. (2014). Norwegian prospective teachers’ MKT when interpreting pupils’ productions on a fraction task. Nordic Studies in Mathematics Education, 19(3-4), 135-150.

https://hdl.handle.net/11588/586956

Küchemann, D. (1980). Children's Difficulties with Single Reflections and Rotations. Mathematics in School, 9(2), 12-13.

Mellone, M., Jakobsen, A., Ribeiro, M., & Parlati, A. (2023). Ethical dimension in the use of interpretative tasks in mathematics teacher education: fraction division. In Proceedings Thirteenth Congress of the European Society for Research in Mathematics Education. Alfréd Rényi Institute of Mathematics; ERME.

https://hal.science/hal-04407634/

Mellone, M., Ribeiro, M., Jakobsen, A., Carotenuto, G., Romano, P., & Pacelli, T. (2020). Mathematics teachers’ interpretative knowledge of students’ errors and non-standard reasoning. Research in Mathematics Education, 22(2), 154-167.

https://doi.org/10.1080/14794802.2019.1710557

Mellone, M., Tortora, R., Jakobsen, A., & Ribeiro, M. (2017). Prospective teachers interpret student responses: Between assessment, educational design and research. In Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education. Dublin, Ireland.

https://hal.science/hal-01949034/

Montes, M. A., & Climent, N., (2016). Conocimiento de la estructura matemática (KSM). En J. Carrillo, L.C. Contreras y M. Montes (Eds.), Reflexionando sobre el conocimiento del profesor. Actas de las II Jornadas del Seminario de Investigación de Didáctica de la Matemática de la Universidad de Huelva, 21-29. SGSE: Huelva.

http://hdl.handle.net/10272/12509

Nye, B., Konstantopoulos, S., & Hedges, L. V. (2004). How large are teacher effects?. Educational evaluation and policy analysis, 26(3), 237-257.

https://doi.org/10.3102/01623737026003237

Piccoli, J. P., & Souza, E. (2020). Manual didático brasileiro do segundo ano do ensino fundamental: o conhecimento especializado do professor que ensina matemática. Educação Matemática Pesquisa, 23(1), 231-262.

https://doi.org/10.23925/1983-3156.2021v23i1p231-262

Rebolledo, R. D., Zakaryan, D., & Carvajal, C. A. (2022). El conocimiento de la práctica matemática. In Investigación sobre conocimiento especializado del profesor de matemáticas (MTSK): 10 años de camino (pp. 57-69). Dykinson.

Ribeiro, M. (2024). Conhecimento interpretativo de futuros professores da Educação Infantil e dos Anos Iniciais ao atribuírem significado a produções de alunos no contexto de abordagens alternativas ao algoritmo típico da subtração. Debates em Educação, 16(38), e16020-e16020.

https://doi.org/10.28998/2175-6600.2024v16n38pe16020

Ribeiro, M. (2018). Das generalidades às especificidades do conhecimento do professor que ensina Matemática: metodologias na conceitualização (entender e desenvolver) do conhecimento interpretativo. Abordagens teóricas e metodológicas nas pesquisas em educação matemática. Biblioteca do Educador. Brasil: SBEM, 13, 167-185.

Ribeiro, C. M., Mellone, M., & Jakobsen, A. (2013). Characterizing prospective teachers’ knowledge in/for interpreting students’ solutions. In Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 89-96). Kiel: PME.

Ribeiro, M.; Silva, C. (2024). Especificidades do Conhecimento Interpretativo do professor e das Tarefas para a Formação como elementos para práticas criativas e matematicamente inovadoras. Revista Ibero-Americana de Estudos em Educação. (aceite).

Rowland, T., Turner, F., Thwaites, A., & Huckstep, P. (2009). Developing Primary Mathematics Teaching: Reflecting on Practice with the Knowledge Quartet. SAGE.

Sadler, D. R. (1989). Formative assessment and the design of instructional systems. Instructional Science, 18, 119-144.

https://doi.org/10.1007/BF00117714

Santos, L., & Pinto, J. (2009). Lights and shadows of feedback in mathematics learning. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.), Proceedings of PME 33, the 33rd conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp.49–56). Thessaloniki: PME.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14.

https://doi.org/10.3102/0013189X015002004

Tardif, M. (2002). Saberes docentes e formação profissional. Vozes.

Thaqi, X., Giménez, J., & Rosich, N. (2011). Geometrical transformations as viewed by prospective teachers. In Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 578-587). Rzeszow. Poland.

http://erme.site/wp-content/uploads/2021/06/CERME7.pdf

Turgut, M., Yenilmez, K., & Anapa, P. (2014). Symmetry and rotation skills of prospective elementary mathematics teachers. Bolema: Boletim de Educação Matemática, 28, 383-402. https://doi.org/10.1590/1980-4415v28n48a19

Wagner, E. (1993). Construções Geométricas. GRAFTEX Comunicação Visual.

Xistouri, X., & Pitta-Pantazi, D. (2011). Elementary students’ transformational geometry abilities and cognitive style. In Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 568-577). Rzeszów, Poland. http://erme.site/wp-content/uploads/2021/06/CERME7.pdf

Published

2025-05-31

How to Cite

Silva, C. A. S., Menezes, S., & Ribeiro, M. . (2025). Mathematics teacher’s specialized knowledge and interpretative knowledge: weaving theoretical relations within the scope of isometric geometric transformation rotation. Educação Matemática Pesquisa, 27(2), 034–062. https://doi.org/10.23925/1983-3156.2025v27i2p034-062

Issue

Section

Call for papers to the special issue: Theoretical frameworks for discussing math