Le passage de l'arithmétique à l'algèbre dans l'enseignement des mathématiques au Collège

Troisième partie : Approches et problèmes didactiques

Auteurs

DOI :

https://doi.org/10.23925/1983-3156.2023v25i1p597-644

Mots-clés :

Arithmétique, Algèbre, Modélisation, Analyse didactique

Résumé

Dans cette troisième partie sur le " Passage de l'arithmétique à l'algébrique dans l'enseignement des mathématiques au collège ", nous réfléchissons sur le terme de modélisation : la modélisation, au sens où nous utilisons ce mot, peut s'appuyer aussi bien sur un système non mathématique que sur un système mathématique. L'analyse didactique des perspectives curriculaires que nous avons esquissées révèle des problèmes de didactique des mathématiques qui soulignent la nécessité de liens très étroits, d'une dialectique tenace, qui devrait être l'affaire de tous, entre la recherche fondamentale en didactique et les activités de développement du système d'enseignement. En revanche, la situation actuelle révèle la grande superficialité dont la tradition empirique et dogmatique a fait de nous les héritiers malheureux. Il ne suffit pas de faiblir, de décider et d'agir pour résoudre les problèmes auxquels nous sommes et restons confrontés. Comme dans d'autres domaines, la recherche n'est plus aujourd'hui que la part d'un rêve dans lequel les sociétés à forte croissance pourraient s'offrir en prime.  Il lui revient d'explorer, au nom de tous, les voies du possible.

Métriques

Chargements des métriques ...

Biographie de l'auteur

Saddo Ag Almouloud, PUC-SP

Doutorado em Mathematiques et Applications - Université de Rennes 1 em 1992 - frança. Assistente doutor - pontifícia universidade católica de São Paulo, e assistente doutor da fundação Santo André. Consultor ad hoc da fundação de amparo a pesquisa do estado de são Paulo, da capes, bolsista pesquisador de CNPQ, foi coordenador do programa de estudos pós-graduados em educação matemática da PUC-SP de 2007 à 2009 e de 01/08/2013 a 31/07/2017. Atualmente é vice coordenador do referido programa. Foi coordenador do curso de especialização em educação matemática da PUC-SP de 2006 a 2017. Publicou mais de 50 artigos em periódicos especializados e mais de 83 trabalhos em anais de eventos. Possui 5 capítulos de livros e 12 livros publicados. Possui 1 software e mais de 62 itens de produção técnica. Participou de vários eventos no exterior e mais de 112 no brasil. Orientou mais 77 dissertações de mestrado e teses de doutorado na área de educação matemática entre 1996 e 2016. Participou de mais de 200 bancas de defesa de dissertações e doutorados. Coordenou mais de 5 projetos de pesquisa. Atualmente coordena 2 projetos de pesquisa. Atua na área de educação, com ênfase em educação matemática. É avaliador do prêmio victor civita desde 2013. Em suas atividades profissionais interagiu com mais 70 colaboradores em coautorias de trabalhos científicos. Em seu currículo lattes os termos mais frequentes na contextualização da produção científica, tecnológica e artístico-cultural são: ensino-aprendizagem, geometria, educação matemática, matemática, demonstração, ensino básico, formação de professores, geometria dinâmica, TIC.

Références

Artin E. (1972), Algèbre géométrique, Gauthier-Villars, Paris.

Badiou A. (1968), Le concept de modèle, François Maspéro, Paris.

Balibar E. et Macherey P. (1985), "Fonnalisme et fonnalisation", Encyclopaedia Universalis, vol. 7, Paris, pp.1183-1186.

Berrondo M. (1979), Les jeux mathématiques d'Eurêka, Dunod, Paris.

Chevallard Y. (1985a), "Le passage de l'arithmétique à l'algébrique dans l'enseignement des mathématiques au collège - Première partie. L'évolution de la transposition didactique", Petit x, 5, pp.5194.

Chevallard Y. (1985b), La transposition didactique - Du savoir savant au savoir enseigné, La Pensée sauvage, Grenoble.

Chevallard Y. (1986), "Les programmes et la transposition didactique - Illusions, contraintes et possibles", Bulletin de l'APMEP, 352 (février 1986), pp.32-50.

Chevallard Y. (1988a), Notes sur la question de l'échec scolaire, Publications de l'IREM d'AixMarseille, nO 13, Marseille.

Chevallard Y. (1988b), "Implicit Mathematics: Ils Impact on Societal Needs and Demands", in John Malone, Hugh Burkhardt et Christine Keitel (eds), The Mathematics Curriculum: Towards the Year 2000, Curtin University of Technology, Perth (Australie), 1989, pp.49-57.

Chevallard Y. (1989a), "Le passage de l'arithmétique à l'algébrique dans l'enseignement des mathématiques au collège - Deuxième partie. Perspectives curriculaires: la notion de modélisation", Petit x, 19, pp.43-75.

Chevallard Y. (1989b), Le concept de rapport au savoir -Rapport personnel, rapport institutionnel, rapport officiel, intervention au Séminaire de didactique des mathématiques et de l'informatique (Université Joseph-Fourier - Grenoble l, 26 juin 1989), année 1988-1989, LSD-lMAG et Institut Fourier, Grenoble, pp.211-235.

Chevallard Y. (1989c), Activités de modélisation mathématique en classe de seconde, rapport intennédiaire de l'équipe «Modélisation algébrique» de l'IREM d'Aix-Marseille.

Chevallard Y. (1989d), Arithmétique, algèbre, modélisation -Etapes d'une recherche, Publications de l'IREM d'Aix-Marseille, nO 16, Marseille.

Chevallard Y. et Feldmann S. (1986), Pour une analyse didactique de l'évaluation, Publications de l'IREM d'Aix-Marseille, nO 3, Marseille.

Chevallard Y. et Mercier A. (1987), Sur la formation historique du temps didactique, Publications de l'IREM d'Aix-Marseille, n08, Marseille. [p.38]

Chevallard Y. et Jullien M. (1989), Sur l'enseignement des fractions au Collège - Ingénierie, recherche, société, Publications de l'IREM d'Aix-Marseille, no 15, Marseille.

Dhombres J. (1978), Nombre, mesure et continu: épistémologie et histoire, Cedic/Nathan, Paris.

Dunn S.C. (1981), "Parking a Car", in DJ.G. James et J.J. McDonalds (eds), Case Studies in' Mathematical Modelling, Stanley Thornes, Cheltenham, pp.ll0-123.

Freudenthal H. (1971), "Geometry Between the Devil and the Deep Sea", Educational Studies in Mathematics, 3, ppA13-435.

Freudenthal H. (1973), Mathematics as an Educational Task, D. Reidel, Dordrecht.

Greenberg M.J. (1974), Euclidean and Non-Euclidean Geometry, W.H. Freeman, San Francisco.

Halmos P.R. (1967), Introduction à la théorie des ensembles, Gauthier-Villars, Paris, et Mouton, Paris - La Haye, deuxième édition 1970.

Hilbert D. (1971), Les fondements de la géométrie, édition critique préparée par Paul Rossier et publiée avec le concours du CNRS, Dunod, Paris, 1971.

Jaulin R. (1971), "Analyse formelle de la géomancie", in P. Richard et R. Jaulin (eds), Anthropologie et calcul, Union générale d'éditions, Paris, pp.183-215.

Kuhn T.S. (1983), La structure des révolutions scientifiques, Flammarion, Paris.

Lebesgue H. (1932), La mesure des grandeurs, Albert Blanchard, Paris, 1975.

Lucas E. (1892), Récréations mathématiques, vol. III, Albert Blanchart, Paris, 1960.

Mendelson E. (1964), Introduction to Mathematical Logic, D. Van Nostrand, Princeton.

Niss M. (1987), "Applications and Modelling in the Mathematics Curriculum - State and Trends", Int. J. Math. Educ. Sci. Techn., 18, 4, ppA87-505.

Ore O. (1967), Invitation to Number Theory. The Mathematical Association of America, Yale University.

Pérès J. (1984), Utilisation d'une théorie des situations didactiques en vue de l'identification des phénomènes didactiques au cours d'une activité d'apprentissage scolaire - Construction d'un code de désignation d'objets à l'école maternelle, Université de Bordeaux l, IREM de Bordeaux.

Polya G. (1965), Comment poser et résoudre un problème, deuxième édition, Dunod, Paris.

POllS R.B. (1986), "Discrete Mathematics", in M. Carss (éd.), Proceedings of the Fifth International Congress on Mathematics Education, Birkhaüser, Boston, pp.31-47.

Schoenfeld A.H. (1985), Mathematical Problem Solving, Academic Press, Orlando.

Schoenfeld A.H. (1987), "Polya, Problem Soving, and Education", Mathematics Magazine, 60, 5 (décembre 1987), pp.283-291. .

Schubauer-Leoni ML. (1986), Le contrat didactique dans l'élaboration d'écritures symboliques par des élèves de 8 - 9 ans, Interactions didactiques, no 7, Universités de Genève et de Neuchâtel.

Smith D.E. (1925), History of Mathematics. vol. II, Dover, New York, 1958.

Vergnaud G. (1981),L'enfant.la mathématique et la réalité, Peter Lang, Berne.

Publiée

2023-04-29

Comment citer

CHEVALLARD, Y.; ALMOULOUD, S. A. Le passage de l’arithmétique à l’algèbre dans l’enseignement des mathématiques au Collège: Troisième partie : Approches et problèmes didactiques. Educação Matemática Pesquisa, São Paulo, v. 25, n. 1, p. 597–644, 2023. DOI: 10.23925/1983-3156.2023v25i1p597-644. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/61804. Acesso em: 19 déc. 2024.

Numéro

Rubrique

Tradução de artigo ou capítulo de livro