Analyse temporelle des compétences en mathématiques et des facteurs influençant les performances scolaires:
une enquête sur les données de l'enseignement primaire
DOI :
https://doi.org/10.23925/1983-3156.2025v27i3p258-281Mots-clés :
Modèle hiérarchique, Maîtrise des mathématiques, Direction de l'enseignement, SARESPRésumé
Au cours de l'éducation de base, des facteurs liés à l'environnement familial et à l'infrastructure scolaire peuvent influencer les performances académiques d'un élève. Les systèmes d'évaluation à grande échelle cherchent à identifier les mécanismes permettant d'améliorer la qualité de l'éducation de manière efficace et efficiente. Dans ce contexte, cette étude vise à examiner la relation entre les compétences en mathématiques des élèves de troisième année du secondaire des écoles publiques de l'État de São Paulo et les caractéristiques pédagogiques et les profils socio-économiques des écoles. À cette fin, des données ont été collectées sur les résultats en mathématiques, ainsi que des réponses à un questionnaire administré aux parents des élèves participant à l'édition 2013 du SARESP. La méthodologie utilise des modèles hiérarchiques à deux niveaux, prenant en compte les élèves imbriqués dans les écoles. Le modèle le mieux adapté a été sélectionné sur la base du critère d'information d'Akaike (AIC), et l'analyse a été réalisée à l'aide de RStudio. Les résultats indiquent que le niveau d'éducation des parents, le revenu familial et le respect des devoirs par l'élève ont une incidence positive sur les performances en mathématiques. Enfin, nous tenons à souligner que les échecs et le manque d'enseignants dans certaines matières sont préjudiciables à l'apprentissage des élèves.
Références
Alavarse, O. M., Bravo, M. H. & Machado, C. (2013). Avaliações externas e qualidade na educação básica: articulações e tendências. Estudos em Avaliação Educacional, 24(54), 12-31
Alves, M. T. G. & Soares, J. F. (2008). O efeito das escolas no aprendizado dos alunos: um estudo com dados longitudinais no Ensino Fundamental. Educação e Pesquisa, 34 (3), 527-544.
Andrade, J. M., & Laros, J. A. (2007). Fatores associados ao desempenho escolar: Estudo multinível com dados do SAEB/2001. Psicologia: Teoria e Pesquisa, 23 (1), 33–42. https://doi.org/10.1590/S0102-37722007000100007
Barbosa, M. E. F., & Fernandes, C. (2000). Modelo multinível: Uma aplicação a dados de avaliação educacional. Estudos em Avaliação Educacional, (22).
Barbosa, M. E. F. & Fernandes, C. (2001). A Escola Brasileira Faz Diferença? Uma Investigação dos Efeitos da Escola na Proficiência em Matemática dos Alunos da 4ª série. In: F. Creso (org.), Avaliação, Ciclos e Promoção na Educação (pp. 155-178). Artmed Editora.
Bassetto, C. F. (2019). Background familiar e desempenho escolar: uma abordagem com variáveis binárias a partir dos resultados do Saresp. Revista Brasileira de Estudos de População, 36, e0077.
Bliese, P. Multilevel modeling in R (2.6): a brief introduction to R, the multilevel package and the nlme package. In: R DEVELOPMENT CORE TEAM. An introduction to R [S. l.: s. n.], 2016. https://cutt.ly/ZEIuKIc.
Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370.
Brasil. (1988). Constituição da República Federativa do Brasil de 1988. http://www.planalto.gov.br/ccivil_03/constituicao/constituicao.htm
Brasil. Ministério da Educação. (1996). Lei de Diretrizes e Bases da Educação Nacional – LDB (Lei nº 9394/96). http://www.planalto.gov.br/ccivil_03/leis/l9394.htm
Resolução SE Nº 27, de 29 de Março de 1996. (1996). Dispõe sobre o Sistema de Avaliação de Rendimento Escolar do Estado de São Paulo.
Brasil. (2014). Relatório Pedagógico de Matemática SARESP 2014. São Paulo, SP: Secretaria da Educação do Estado de São Paulo. https://file.fde.sp.gov.br/saresp/saresp2014/Arquivos/RELATORIO_PEDAGOGICO_MATEMATICA.pdf
Brasil. (2022). Sumário executivo SARESP 2022. São Paulo, SP: Secretaria da Educação do Estado de São Paulo. https://saresp.fde.sp.gov.br/Arquivos/SumarioExecutivo_SARESP_2022.pdf
Brito, K. R. L. A. & Conceição, S. da. (2024). Avaliação em larga escala: um breve histórico das políticas avaliativas no sistema educacional brasileiro. Revista Foco, 17(1), e4112.
Brooke, N., Fernandes, N. da S., Miranda, I. P. H. de ., & Soares, T. M. (2014). Modelagem do crescimento da aprendizagem nos anos iniciais com dados longitudinais da pesquisa GERES. Educação E Pesquisa, 40(1), 77–94. https://doi.org/10.1590/S1517-97022014000100006
Draper, N. R. & Smith, H. (1998). Applied Regression Analysis. Wiley.
Ferrão, M. E., Beltrão, K. I., Fernandes, C., Santos, D., Suárez, M. & Andrade, A. do C. (2001). O SAEB – Sistema Nacional de Avaliação da Educação Básica: objetivos, características e contribuições na investigação da escola eficaz. Revista Brasileira de Estudos de População, 18 (1/2), 111-130.
Fletcher, P. R. (1998). À procura do ensino eficaz. Ministério da Educação e Cultura, Departamento da Avaliação da Educação Básica.
Gelman, A. & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Goldstein, H. (1995). Multilevel statistical models. Wiley.
Hojas, V. F. (2017). SARESP: a escola como produtora de políticas. [Tese de Doutorado em Educação, Universidade Estadual Paulista “Júlio de Mesquita Filho”]. https://repositorio.unesp.br/server/api/core/bitstreams/4dc20cd8-e677-46e5-9fa1-726cddf33e69/content
Jesus, G. R. de & Laros, J. A. (2004). Eficácia escolar: regressão multinível com dados de avaliação em larga escala. Avaliação Psicológica, 3 (2), 93-106.
Kreft I. & Leeuw, J. de (1998). Introducing multilevel modeling. Sage Publications.
Laros, J. A. & Marciano, J. L. P. (2008). Análise multinível aplicada aos dados do NELS: 88. Estudos em avaliação educacional, 19(40), 263-278.
Laros, J. A., Marciano, J. L. P. & Andrade, J. M. de. (2010). Fatores que afetam o desempenho na prova de Matemática do SAEB: Um estudo multinível. Avaliação Psicológica, 9, 173-186.
Machado, A. F., Moro, S., Martins, L. & Rios, J. (2008). Qualidade do ensino em Matemática: determinantes do desempenho de alunos em escolas públicas estaduais mineiras. Revista Econômica da ANPEC, 9(1), p. 23-45
Menezes, E. T. & Santos, T. H. (2001). Verbete diretorias de ensino. Dicionário Interativo da Educação Brasileira – Educabrasil. http://www.educabrasil.com.br/diretorias-de-ensino/
Minhoto, M. A. (2016). Política de avaliação da educação brasileira: limites e perspectivas. In A. B. Gouveia (Org.), Políticas educacionais: conceitos e debates (pp. 147–168). Appris.
Palermo, G. A., Silva, D. B. N., & Novellino, M. S. F. (2014). Fatores associados ao desempenho escolar: uma análise da proficiência em matemática dos alunos do 5º ano do ensino fundamental da rede municipal do Rio de Janeiro. Revista Brasileira de Estudos de População, 31(2), 367–394. https://www.rebep.org.br/revista/article/view/673
Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical Linear Models: applications and data analysis methods. Sage Publications.
Riani, J. de L. R. & Rios-Neto, E. L. G. (2008). Background familiar versus perfil escolar do município: qual possui maior influência no resultado educacional dos alunos brasileiros? Revista Brasileira de Estudos Populacionais, 25(2), 251-269.
RStudio. (n.d.). RStudio: Integrated development environment for R. https://www.rstudio.com/
Soares, J. F. & Alves, M. T. G. (2003). Desigualdades raciais no sistema brasileiro de educação básica. Educação e Pesquisa, 29(1), 147-165.
Soares, J. F., Cesar, C. C., & Mambrini, J. (2001). Determinantes de desempenho dos alunos do ensino básico brasileiro. In F. Creso (Org.), Avaliação, ciclos e promoção na educação (pp. 121–154). Porto Alegre: Artmed.
Soares, T. M. & Mendonça, M. C. (2003). Construção de um modelo de regressão hierárquico para os dados do Simave-2000. Pesquisa Operacional, 23 (3), 421-441.
Soares, T. M. (2005). Modelo de três níveis hierárquicos para a proficiência dos alunos de 4ª série avaliados no teste de língua portuguesa do SIMAVE/PROEB-2002. Revista Brasileira de Educação, (29), 73–87. https://doi.org/10.1590/S1413-24782005000200007
Souza, A. R. (2016). Porque estudar políticas educacionais? In A. B. Gouveia (Org.), Políticas educacionais: conceitos e debates (pp. 13–22). Appris.
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).