GeoGebra Classroom, em período de confinamento, no ensino e aprendizagem das propriedades dos quadriláteros

Autores

  • Ilda Marisa de Sá Reis Agrupamento de Escolas do Castêlo da Maia
  • José Manuel Dos Santos Instituto GeoGebra de Portugal http://orcid.org/0000-0002-6830-6503

DOI:

https://doi.org/10.23925/2237-9657.2022.v11i1p118-136

Palavras-chave:

GeoGebra Classroom, Tecnologias Educacionais, Aprendizagem de geometria, Ensino e aprendizagem online, Investigação Baseada em Design

Resumo

Este artigo apresenta uma experiência de aprendizagem on-line com o uso do GeoGebra Classroom, ocorrida durante o primeiro período de confinamento em Portugal, de março a junho de 2020, provocado pela pandemia da COVID19. Além dos investigadores, participam também neste estudo duas turmas de 7º ano, do ensino básico, de uma escola secundária. Brevemente, são apresentadas as características inerentes ao ecossistema GeoGebra Classroom, descrevendo os materiais construídos e aplicados na aula à distância. Os conteúdos de ensino e aprendizagem incidiram na construção e nas propriedades dos quadriláteros. Também analisaremos o percurso da experiência de ensino realizada, refletindo sobre as virtualidades desta abordagem on-line, comparando-a com outras situações de ensino presencial. Finalmente, os resultados desta experiência de ensino serão discutidos, apontando os seus pontos fortes e fracos, delineando alguns aspetos a serem acautelados no desenvolvimento de experiências futuras semelhantes.

Downloads

Não há dados estatísticos.

Metrics

Carregando Métricas ...

Biografia do Autor

José Manuel Dos Santos, Instituto GeoGebra de Portugal

Centro de Investigação e Inovação em Educação. ESE Politécnico do Porto

http://www.geogebra.org.pt

Referências

Bottino, R. and Furinghetti, F. (1996). The Emerging of teachers’ conceptions of new subjects inserted into mathematics programs: The case of informatics. Educational Studies in Mathematics 30, 109–134.

Clements, D. H. (1999). Geometric and spatial thinking in young children. In J. V. Copley (Ed.), Mathematics in the early years (pp. 66–79). Reston, VA: National Council of Teachers of Mathematics.

Cobb, P. (2000). Conducting classroom teaching experiments in collaboration with teachers. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 307–334). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Cobb, P. (2003). Investigating students’ reasoning about linear measurement as a paradigm case of design research. In M. Stephan, J. Bowers, P. Cobb, & K. Gravemeijer (Eds.), Supporting students’ development of measuring conceptions: Analyzing students’ learning in social context (pp. 1–16). Reston, VA: National Council of Teachers of Mathematics.

Danke, O. L. (1976). Investigación y comunicación, en C. Fernández—Collado y G.L. Dankhe (Eds): “La comunicación humana: ciencia social”. México, D.F: McGrawHill de México. Capítulo 13, pp. 385— 454.

Denbel, D. G. (2015). Students’ learning experiences when using a dynamic geometry software tool in a geometry lesson at secondary school in Ethiopia. Journal of Education and Practice, 6(1), 23–38.

Dos Santos, J., e Trocado, A.- (2016). GeoGebra as a learning Mathematical Environment. Revista do Instituto GeoGebra Internacional de São Paulo. ISSN 2237-9657, 5(1), 05-22. https://revistas.pucsp.br/IGISP/article/viewFile/26795/19963

Drijvers, P., & Trouche, L. (2008). From artifacts to instruments: A theoretical framework behind the orchestra metaphor. In: G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics (pp. 363–392). Charlotte, NC: Information Age.

Gawlick, Th. (2002). On Dynamic Geometry Software in the Regular Classroom. ZDM, 34(3), 85-92.

Hohenwarter, J., Hohenwarter, M., & Lavicza, Z. (2008). Introducing dynamic mathematics software to secondary school teachers: The case of geogebra. Journal of Computers in Mathematics and Science Teaching, 28 (2), 135–146.

Hohenwarter, M. (2002). GeoGebra-a software system for dynamic geometry and algebra in the plane. Unpublished master’s thesis, University of Salzburg, Austria.

Hollebrands, K. F. (2003). High school students’ understandings of geometric transformations in the context of a technological environment. Journal of Mathematical Behavior, 22(1), 55-72.

Jones, K. (2002). Research on the use of dynamic geometry software: implications for the classroom. MicroMath, 18(3), 18-20.

Kosko, K. W., Rougee, A., & Herbst, P. (2014). What actions do teachers envision when asked to facilitate mathematical argumentation in the classroom? Mathematics Education Research Journal, 26(3), 459– 476.

Laborde,C.(1999).Technology used as a tool for mediating knowledge in the teaching of mathematics: the case of Cabri-geometry, in Plenary lecture at Asian Technology Conference in Mathematics.

Leung, A. (2015). Discernment and reasoning in dynamic geometry environments. In Selected regular lectures from the 12th international congress on mathematical education (pp. 451-469). Springer, Cham.

MEC (2018). Aprendizagens Essenciais, Articulação com o Perfil dos Alunos - Matemática - Ensino Básico, 3.º ciclo, Matemática, 7.° ano. http://www.dge.mec.pt/sites/default/files/Curriculo/Aprendizagens_Essenciais/3_ciclo/matematica_3c_7a_ff_18julho_rev.pdf

NCTM (National Council of Teachers of Mathematics), (2000). Principles and Standards for School Mathematics. Reston, VA: Author.

Plomp, T. (2013). Educational design research: An introduction. In T. Plomp & N. Nieveen (Eds.), Educational design research - Part A: An Introduction (pp. 10-51). Enschede, the Netherlands: SLO.

Ruthven, K., Hennessy, S., & Deaney, R. (2008). Constructions of dynamic geometry: A study of the interpretative flexibility of educational software in classroom practice. Computers and Education, 51(1), 297-317.

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: from research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350.

Swan, M. (2007). The impact of task-based professional development on teachers‟ practices and beliefs: A design research study. Journal of Mathematics Education, 10, 217-237.

Wiest, L. R. (2001). The role of computers in mathematics teaching and learning, Computers in the Schools, 17(1-2), 41-55.

Yackel, E., e Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.

Zöchbauer, J., & Hohenwarter, M. (2020, February). Developing a collaboration tool to give every student a voice in a classroom discussion. In Seventh ERME Topic Conference on Language in the Mathematics Classroom. https://hal.archives-ouvertes.fr/hal-02970629/document

Materiais

Dos Santos, J.M. e Reis, I.M.S. (2020). Vídeos de apoio às tarefas. https://www.youtube.com/channel/UC8OBwSN3Cvo1Zr0X27Fulhw/videos

Downloads

Publicado

2022-06-07

Como Citar

Reis, I. M. de S. ., & Dos Santos, J. M. . (2022). GeoGebra Classroom, em período de confinamento, no ensino e aprendizagem das propriedades dos quadriláteros . Revista Do Instituto GeoGebra Internacional De São Paulo, 11(1), 118–136. https://doi.org/10.23925/2237-9657.2022.v11i1p118-136

Edição

Seção

Artigos