From 2D to 3D: Investigating Generalizations of Triangles’ properties to Tetrahedra.

Authors

  • Humberto José Bortolossi Universidade Federal Fluminense
  • Rogério Vaz de Almeida Junior SEEDUC-RJ/CEDERJ

DOI:

https://doi.org/10.23925/2237-9657.2022.v11i2p159-162

Keywords:

GEOMETRY, INQUIRY-BASED ACTIVITY, GEOGEBRA

Abstract

This article presents an enquiry-based activity that articulates plane and spatial geometries in GeoGebra through the study of possible generalizations of triangles’ properties to tetrahedra.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

ALLENDOERFER, C. B. Generalizations of Theorems about Triangles. Mathematics Magazine, v.8, n. 5, p. 253-259, 1965.

AWASAKI KEN-ICHIROH. Three-Dimensional Viviani Theorem on a Tetrahedron. ournal for Geometry and Graphics, v.23, n. 2, p. 179182, 2019.

CHEUNG, K. H., CHEUNG P. L., Old And New Generalizations Of Classical Triangle Centres To Tetrahedra. Hang Lung Mathematics Awards, v.8, p. 173-230, 2018.

COURT, N. A. Notes On The Orthocentric Tetrahedron. The American Mathematical Monthly.v. 41 n. 8,p. 499-502, 1934.

HARTNETT, K. Tetrahedron Solutions Finally Proved Decades After Computer Search. Quanta, 2022 https://www.quantamagazine.org/tetrahedron-solutions-finally-proved-decades-after-computer-search-20210202

HONNER, P. Why Triangles Are Easy and Tetrahedra Are Hard. Revista Quanta, 2022 https://www.quantamagazine.org/triangles-are-easy-tetrahedra-are-hard-20220131/

ERIKSSON, F. The law of sines for tetrahedra and n-simplices. Geom Dedicata V.7,P. 71–80 1978.

KATSUURA, hIDEFUMI. Journal for Geometry and Graphics Volume 23 (2019), No. 2, 179–182. Three-Dimensional Viviani Theorem on a Tetrahedron. Mathematics Magazine, v.78, n. 3, p. 213, 2015.

MUNIZ NETO, A; C; , An Excursion through Elementary Mathematics, Volume II: Euclidean Geometry. CHAM:Springer Nature, 2018.

WAGNER, E. Construções Geométricas. Rio de Janeiro SBM: 2007.

WEISSTEIN, Eric W. de Gua's theorem. MathWorld.2022 https://mathworld.wolfram.com/deGuasTheorem.html

Published

2022-11-12

How to Cite

Bortolossi, H. J., & Almeida Junior , R. V. de . (2022). From 2D to 3D: Investigating Generalizations of Triangles’ properties to Tetrahedra. Journal of the GeoGebra International Institute of São Paulo, 11(2), 159–162. https://doi.org/10.23925/2237-9657.2022.v11i2p159-162

Issue

Section

Proposals for Action