Pursuit Curve: Presenting the Classical Problem Using GeoGebra

Authors

DOI:

https://doi.org/10.23925/2237-9657.2025.v14i2p145-152

Keywords:

GeoGebra, Pursuit Curve, Ordinary Differential Equations

Abstract

The problem of the pursuit curve, commonly presented, modeled, and solved in Differential and Integral Calculus classroom, will be illustrated throughout this paper with the assistance of GeoGebra software. Throughout the text, we will consider the problem of analyzing the solution of the equation obtained by modeling the following problem: determine the trajectory described by a dog, which initially at position (c,0), c>0, runs at speed b toward a cat that leaves the origin at speed a in the direction of the positive y-axis. Once the modeling and solution of the corresponding Initial Value Problem have been completed, it will be possible to analyze the behavior of the curve for different values assigned to the speeds of the dog and cat through the input field, a function present in the GeoGebra software.

References

Boole, G. (1877). A treatise on differential equations. Macmillan and Company.

de Almeida, M. E.; Queiruga-Dios, A., Cáceres, M. J. (2021); Differential and Integral Calculus in First-Year Engineering Students: A Diagnosis to Understand the Failure., Mathematics, v. 9.

Jr, R. L. d. O. (2015). Introduzindo problemas e curvas de perseguição no ensino médio e universitário. Revista Brasileira de Ensino de Física, 37, 4502–1.

Lopes, R.; Tort, A. (2014). The airplane carrier, the torpedo, and the apolllonius circle. Revista Brasileira de Ensino de Física, 36, 3502.

Soldatelli, A. (2016). Matemática do pega-pega. Scientia cum Industria, 4(4), 232–236.

Rival, I. (1987), Picture Puzzling: Mathematicians are Rediscovering the Power of Pictorial Reasoning, The Sciences 27, 41-46.

Souza, M. J. A.. (2001). Informática Educativa na Educação Matemática Estudo de Geometria no ambiente do software Cabri-Géomètre. 2001. 179f. Dissertação (Mestrado em Educação Brasileira) - Programa de Pós-Graduação em Educação Brasileira da Universidade Federal do Ceará, Ceará, CE.

Tavares, A. (2012). Equação diferencial de uma curva de perseguição — problema. Problemas e Teoremas. Acessado em 14 de abril de 2024. Disponível em:https://problemasteoremas.blog/2012/11/30/equacao-diferencial-de-uma-curva-de-perseguicao-problema/.

Tort, A. (2011). Algumas observações sobre o círculo de apolônio e o seu emprego no método das imagens. Revista Brasileira de Ensino de Física, 33, 1704.

Zimmermann, W., Cunningham S. (1991). Visualization in Teaching and Learning Mathematics. Eds. MAA Notes. N° 19.

Published

2025-12-02

How to Cite

Pires Ferreira Marão, J. A., de Jesus Arias Cantillo, R., & Coelho da Silva, V. (2025). Pursuit Curve: Presenting the Classical Problem Using GeoGebra. Journal of the GeoGebra International Institute of São Paulo, 14(2), 145–152. https://doi.org/10.23925/2237-9657.2025.v14i2p145-152

Issue

Section

Artigos