Pursuit Curve: Presenting the Classical Problem Using GeoGebra
DOI:
https://doi.org/10.23925/2237-9657.2025.v14i2p145-152Keywords:
GeoGebra, Pursuit Curve, Ordinary Differential EquationsAbstract
The problem of the pursuit curve, commonly presented, modeled, and solved in Differential and Integral Calculus classroom, will be illustrated throughout this paper with the assistance of GeoGebra software. Throughout the text, we will consider the problem of analyzing the solution of the equation obtained by modeling the following problem: determine the trajectory described by a dog, which initially at position (c,0), c>0, runs at speed b toward a cat that leaves the origin at speed a in the direction of the positive y-axis. Once the modeling and solution of the corresponding Initial Value Problem have been completed, it will be possible to analyze the behavior of the curve for different values assigned to the speeds of the dog and cat through the input field, a function present in the GeoGebra software.
References
Boole, G. (1877). A treatise on differential equations. Macmillan and Company.
de Almeida, M. E.; Queiruga-Dios, A., Cáceres, M. J. (2021); Differential and Integral Calculus in First-Year Engineering Students: A Diagnosis to Understand the Failure., Mathematics, v. 9.
Jr, R. L. d. O. (2015). Introduzindo problemas e curvas de perseguição no ensino médio e universitário. Revista Brasileira de Ensino de Física, 37, 4502–1.
Lopes, R.; Tort, A. (2014). The airplane carrier, the torpedo, and the apolllonius circle. Revista Brasileira de Ensino de Física, 36, 3502.
Soldatelli, A. (2016). Matemática do pega-pega. Scientia cum Industria, 4(4), 232–236.
Rival, I. (1987), Picture Puzzling: Mathematicians are Rediscovering the Power of Pictorial Reasoning, The Sciences 27, 41-46.
Souza, M. J. A.. (2001). Informática Educativa na Educação Matemática Estudo de Geometria no ambiente do software Cabri-Géomètre. 2001. 179f. Dissertação (Mestrado em Educação Brasileira) - Programa de Pós-Graduação em Educação Brasileira da Universidade Federal do Ceará, Ceará, CE.
Tavares, A. (2012). Equação diferencial de uma curva de perseguição — problema. Problemas e Teoremas. Acessado em 14 de abril de 2024. Disponível em:https://problemasteoremas.blog/2012/11/30/equacao-diferencial-de-uma-curva-de-perseguicao-problema/.
Tort, A. (2011). Algumas observações sobre o círculo de apolônio e o seu emprego no método das imagens. Revista Brasileira de Ensino de Física, 33, 1704.
Zimmermann, W., Cunningham S. (1991). Visualization in Teaching and Learning Mathematics. Eds. MAA Notes. N° 19.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of the GeoGebra International Institute of São Paulo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Submission, processing, and publication of articles sent to the journal and registration of the DOI at Crossref is free of charge.
Authors retain their copyright and grant the journal the right of first publication of their article, which is simultaneously licensed under a Creative Commons - Attribution 4.0 International license CC BY that allows others to share the article by acknowledging its authorship and initial publication by the journal.
The GeoGebra journal encourages its authors to register their work with information and communication management systems aimed at researchers, such as Academia.edu, Mendeley, ResearchGate, etc.
10.23925