Derivatives and Approximations:

The Case of the Function f(x) = e^x and the Affine Approximation l(x) = x + 1

Authors

DOI:

https://doi.org/10.23925/2237-9657.2025.v14i1p153-157

Keywords:

Function approximation; differential calculus; GeoGebra.

Abstract

This text explores, from a numerical/graphical perspective in GeoGebra, the use of the affine function to approximate the function, including values of e^x that are not so close to p = 0.

Author Biography

Luciana Prado Mouta Pena, Universidade Federal Fluminense

Universidade Federal Fluminense

References

DETREY, Jérémie, DINECHIN, Florent de, PUJOL, Xavier. Return of the hardware floating-point elementary function,18th Symposium on Computer Arithmetic, Montpellier, France, pp.161-168,2007.

MULLER., Jean-Michel Elementary Functions: Algorithms and Implementation, Second Edition, New York: Birkhäuser,2006.

Published

2025-12-02

How to Cite

Bortolossi, H. J., & Mouta Pena, L. P. . (2025). Derivatives and Approximations:: The Case of the Function f(x) = e^x and the Affine Approximation l(x) = x + 1. Journal of the GeoGebra International Institute of São Paulo, 14(2), 153–157. https://doi.org/10.23925/2237-9657.2025.v14i1p153-157

Issue

Section

Proposals for Action