Una parcela para Txuri <br> A plot for Laika

Autores

  • AITZOL LASA Universidad Pública de Navarra
  • MIGUEL R. WILHELMI Universidad Pública de Navarra
  • OLGA BELLETICH Universidad Pública de Navarra

Palavras-chave:

Modelo dinámico. Situación didáctica. Enfoque ontosemiótico. Geometría. Medida. Educación Primaria.

Resumo

Resumen

Se presenta una situación didáctica para la introducción de la optimización de áreas en segundo ciclo de Educación Primaria (8-9 años), que articula la utilización de dos soportes físicos: uno, lápiz y papel; otro, software de geometría dinámica. Se introduce un modelo dinámico en un momento de exploración, una vez que la actividad matemática sobre papel excede el grado de maestría aritmética de los niños. La Teoría de Situaciones Didácticas en Matemáticas y el Enfoque Ontosemiótico del conocimiento y la instrucción matemáticos constituyen el marco teórico del diseño de la situación y del análisis de los resultados. Las pruebas experimentales con niños de segundo y tercer ciclo de Educación Primaria confortan el análisis a priori. Asimismo, se identifican indicios de obstáculos didácticos.

Palabras clave: Modelo dinámico. Situación didáctica. Enfoque ontosemiótico. Geometría. Medida. Educación Primaria.

Abstract

This paper describes a didactical situation to introduce the optimization of areas in Primary Education (age 8-9). The mathematical activity is assisted by two physical instruments: first, paper and pencil; second, dynamic geometry software. Once the mathematical activity on paper exceeds the arithmetical skills of the kids, a dynamic model is used to explore new properties. The design for the didactical situation and the analysis of the results are given in terms of two didactical theories, i.e., the Theory of Didactical Situations in Mathematics and the Onto-semiotic Approach for mathematical knowledge and instruction. The experimental trial on groups age 8-9 and 10-11 strengthens the theoretical approach. In addition, didactical obstacles have been identified.

Keywords: Dynamic model. Didactical situation. Onto-semiotic approach. Geometry. Measure. Primary Education.

Résumé

Une situation didactique pour l’introduction de l’optimisation du calcul d’aires en Cours Élémentaire (CE1 et CE2) est présentée. On articule l’utilisation de deux milieux matériels: un, crayon-papier; autre, logiciel de géométrie dynamique. Un modèle dynamique pour l’exploration est introduit, au moment où l’activité mathématique avec le milieu crayon-papier dépasse la maitrise arithmétique des enfants. La Théorie des Situations Didactiques en Mathématiques et l’Approche Onto-sémiotique de la connaissance et l’enseignement mathématiques conforment le cadre théorique de l’élaboration de la situation et de l’analyse des donnés. La preuve de la contingence avec des enfants CE1 et CE2 conforte l’analyse a priori. On identifie aussi des indices d’obstacles didactiques.

Mots clés : modèle dynamique, situation didactique, approche onto-sémiotique, géométrie, mesure, École Élémentaire.

Metrics

Carregando Métricas ...

Referências

Bloch, I. (1999). L’articulation du travail mathématique du professeur et de l’élève dans l’enseignement de l’analyse en première scientique. Détermination d’un milieu. Connaissances et savoirs. Recherche en Didactique des Mathématiques, 19(2), 135-194.

Bu, L., Schoen, R. (2011). GeoGebra for model-centered learning in mathematics: an introduction. Model Centered Learning. Pathways to Mathematical Understanding Using GeoGebra. Rotterdam: Sense Publishers.

Brousseau, G. (2007). Iniciación al estudio de la Teoría de Situaciones Didácticas. Buenos Aires: Zorzal.

Castro, E. (2001). Didáctica de la matemática en la Educación Primaria. Madrid: Síntesis.

Chamorro, M.C. (2005). Didáctica de las matemáticas en educación infantil. Madrid: Pearson Prentice Hall.

Dickson, L., Brown, M., Gibson, O. (1991). El aprendizaje de las matemáticas. Barcelona: LABOR.

Dienes, Z.P. (1977). Exploración del espacio y práctica de la medida. Barcelona: Teide.

Drijvers, P., Godino, J.D., Font, V., Trouche, L. (2013). One episode, two lenses. Educational Studies in Mathematics, 82(1), 23-49.

Duval, R. 1995. Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Berne: Peter Lang.

Godino, J. D., Aké, L., Gonzato, M., Wilhelmi, M. R. (2014). Niveles de algebrización de la actividad matemática escolar. Implicaciones para la formación de maestros. Enseñanza de las Ciencias, 32(1), 199-219.

Godino, J. D., Batanero C., Contreras, A., Estepa, A. Lacasta, E., Wilhelmi M.R. (2013). Didactic engineering as design-based research in mathematics education. In B. Ubuz, Ç. Haser, M. A. Mariotti (Eds.), Proceedings of CERME 8 (pp. 2810- 2819). Ankara, TR: Middle East Technical University and ERME. [Recuperable en (08/10/14): http://www.mathematik.uni-dortmund.de/~erme/index.php?slab=proceedings].

Godino, J. D., Castro, W.F., Aké, L., Wilhelmi, M. R. (2012). Naturaleza del razonamiento algebraico elemental. Bolema, 42(B), 199-219.

Godino, J.D., Contreras, A., Font, V. (2006). Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición matemática. Recherches en Didactique des Mathématiques, 26(1), 39–88.

Godino, J. D., Font, V., Contreras, A. y Wilhelmi, M. R. (2006) . Una visión de la didáctica francesa desde el enfoque ontosemiótico de la cognición e instrucción matemática. Revista Latinoamerica de Investigación en Matemática Educativa, 9 (1), 117-150. [Recuperable en (08/10/14): http://www.clame.org.mx/relime.htm].

Font, V. (2007). Una perspectiva ontosemiótica sobre cuatro instrumentos de conocimiento que comparten un aire de familia: particular/general, representación, metáfora y contexto. Educación matemática, 19(2), 95–128.

Font, V., Godino, J.D., D’Amore, B. (2007). Enfoque ontosemiótico de las representaciones en educación matemática. For the learning of mathematics, 27(2), 2–7.

Lacasta, E., Malaspina, U., Pascual, J. R., Wilhelmi M. R. (2009). Análisis a priori de una situación de optimización en segundo de Educación Primaria. En M.J. González, M.T. González & J. Murillo (Eds.), Investigación en Educación Matemática XIII (pp. 259-271). Santander: SEIEM. [Recuperable en (08/10/14): http://www.seiem.es/publicaciones/actas.htm].

Lacasta, E., Malaspina, U., Pascual, J. R., Wilhelmi M. R. (2010). Optimization through measurement situations in grade 2. En M. M. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education, Vol 3, pp. 259-271. Belo Horizonte, Brazil: PME.

Lakatos, I. (1976). Pruebas y refutaciones. La lógica del descubrimiento matemático. Madrid: Alianza.

Lasa, A., Wilhelmi, M. R. (2013a). GeoGebra en la formación de profesorado de ESO y Bachillerato. Cónica 3, 30-32. [Recuperable en (08/10/14): http://acgeogebra.cat/butlleti/conica3/conica3.pdf].

Lasa, A., Wilhelmi, M.R. (2013b). Use of GeoGebra in explorative, illustrative and demonstrative moments. Revista do Instituto GeoGebra Internacional de Sao Paulo, 2(1), 52-64. [Recuperable en (01/10/2014): http://revistas.pucsp.br/index.php/IGISP/article/view/15160/12279].

Lasa, A., Wilhelmi, M.R. (2014 febrero). Integración de GeoGebra en el diseño de situaciones didácticas en Educación Primaria. VI Jornades de l’Associació Catalana de GeoGebra. Barcelona: Universidad Pompeu Fabra. [Disponible en (26/03/2014): http://acgeogebra.cat/vi_jornades.html; Enlace a la construcción (26/03/2014): http://www.geogebratube.org/student/mVajSjWVp].

Rabardel, P. (2002). People and technology. And cognitive approach to contemporary instruments. [Recuperable en (26/03/2014): http://ergoserv.psy.univ-paris8.fr].

Ribeiro, C. M. (2013). Del cero hasta más allá del infinito. En A. Berciano, G. Gutiérrez, A. Estepa, N. Climent (Eds.), Investigación en Educación Matemática XVII (pp. 71-90). Bilbao: Universidad del País Vasco. [Recuperable en (08/10/14): http://www.seiem.es/publicaciones/actas.htm].

Trouche, L. (2000). La parabole du gaucher et de la casserole à bec verseur: étude des processus d’apprentissage dans un environnement de calculatrices symboliques. Educational Studies in Mathematics, 41, 239-264.

Vergnaud, G. (1990). La théorie des champs conceptuels. Recherche en Didactique des Mathématiques, 10(2/3), 133-170.

Downloads

Publicado

2014-12-20

Como Citar

LASA, A.; WILHELMI, M. R.; BELLETICH, O. Una parcela para Txuri &lt;br&gt; A plot for Laika. Educação Matemática Pesquisa Revista do Programa de Estudos Pós-Graduados em Educação Matemática, São Paulo, v. 16, n. 4, p. 1089–1110, 2014. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/22011. Acesso em: 18 nov. 2024.

Edição

Seção

Artigos