Análise matemática e olhar didático sobre as fórmulas de Taylor à vista de uma melhor conceitualização

Autores

  • Imed Kilani Université Virtuelle de Tuni -sInstitut Supérieur de l’Education et de la Formation Continue, Université Virtuelle de Tunis https://orcid.org/0000-0001-9549-5250
  • Rahim Kouki Université de Tunis el Manar. https://orcid.org/0000-0002-8664-731X
  • Mohamed Beldi Université de Tunis el Manar IPEI El Manar, (RT-UR13ES27)

DOI:

https://doi.org/10.23925/1983-3156.2022v24i3p062-107

Palavras-chave:

Fórmulas de Taylor, Registros semióticos, Restos de Taylor, Abordagem local e abordagem globlal, Saber preparado

Resumo

As fórmulas de Taylor (Taylor-Young, Taylor-Lagrange e Taylor com resto integral) são objeto de ensino explícito em análise na entrada da universidade e particularmente nas aulas preparatórias aos estudos de engenheiros tunisianos. O objetivo deste artigo é analisar essas fórmulas sob os ângulos matemático e didático. Este trabalho permitiu mostrar a ilusão de transparência dessas fórmulas e revelou suas complexidades sintáticas e semânticas. A análise curricular que realizámos mostrou que estas complexidades não são realmente levadas em conta no programa oficial como no “saber preparado” dos professores.

Metrics

Carregando Métricas ...

Referências

Arslan, S. (2005). L’approche qualitative des équations différentielles en classe de terminale S : Est-elle viable ? Quels sont les enjeux et les conséquences ?. Thèse. Université Joseph Fourier.

Artigue, M. (1990). Épistémologie et didactique. Recherches en Didactique des Mathématiques, 10 (2), 241-286.

Artigue, M. (2005). Apprendre les mathématiques au niveau universitaire : ce que les recherches récentes nous apprennent dans ce domaine. Annales de Sciences Cognitives et Didactique, 11, 269-288.

Bourgade, J-P. (2013). Le théorème des accroissements finis comme question curriculaire. In G. Cirade & al (Eds.), Évolutions contemporaines du rapport aux mathématiques et aux autres savoirs à l’école et dans la société (pp. 221-245). Toulouse : France.

Bruneau, O. (2005). Pour une biographie intellectuelle de Colin Mac-Laurin (1698-1746) : ou l’obstination mathématicienne d’un newtonien. Thèse. Université de Nantes.

Burkhadart. H & Wirtinger.W. (1909). Encyclopédie des sciences mathématiques pures et appliquées, Tome II, Premier volume, Fonctions de variables réelles, éd. française réd. et publ. d'après l'éd. Allemande sous la dir. de Jules Molk.

Chevallard, Y. (1991). Concepts fondamentaux de la didactique : perspectives apportées par une approche anthropologique. Recherches en Didactique des Mathématiques, 12(1), 73-112.

Coppo, M-A.(2009). Une histoire des séries infinies d’Oresme à Euler.Gazette des Mathématiciens. N° 120, 39-52.

Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches en Didactique des Mathématiques, 7 (2), 5-32.

Douady, R. (1991). Tool, Object, Setting, Window: Elements for Analysing and Constructing Didactical Situations in Mathematics. In A.-J. Bishop, S. Mellin-Olsen & J. Van Dormolen (Eds.), Mathematical Knowledge: Its Growth Through Teaching (pp. 107-130). Netherlands: Kluwer AcademicPublishers.

Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de didactiqueet de sciences cognitives, 5, 37-65.

Duval, R. (2006).A Cognitive Analysis of Problems of Comprehension in the Learning of Mathematics.EducationalStudies in Mathematics, 61(1), 103-131.

Institut Préparatoire aux Etudes d’Ingénieurs El Manar. (2016). Classes préparatoires MP: Programme de mathématiques première année. http://www.ipeiem.rnu.tn/sites/default/files/Prog Maths MP 1ère année.pdf

Kouki, R., & Griffiths, B.J. (2020). Introducing Taylor Series an Local Approximations using Historical and Semiotic Approach. International Electronic Journal of Mathematics Education, 15(2), em0573. https://doi.org/10.29333/iejme/6293

Martin, J. (2013). Differences between experts ’and students’ conceptual images of mathematical structure of Taylor series convergence. Educational Studies in Mathematics, 82(2), 267-283.

Rasmussen, C., &Wawro, M. (2017).Post-calculus research in undergraduate mathematics education. In J. Cai (Ed.), The compendium for research in mathematics education. Reston VA: National Council of Teachers of Mathematics.

Tall, D. &Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity.EducationalStudies in Mathematics, 12, 151-169.

Maschietto, M. (2002). L'enseignement de l'Analyse au lycée : les débuts du jeu global/local dans l'environnement de calculatrices. Thèse. Université paris 7-Denis Diderot.

Ravel, L.(2003). Des programmes à la clase : Etude de la transposition didactique interne : Exemple de l’arithmétique en Terminale S spécialité mathématique. Thèse. Laboratoire Leibniz-IMAG.

Publicado

2022-10-31

Como Citar

KILANI, I. .; KOUKI, R.; BELDI, M. . Análise matemática e olhar didático sobre as fórmulas de Taylor à vista de uma melhor conceitualização. Educação Matemática Pesquisa Revista do Programa de Estudos Pós-Graduados em Educação Matemática, São Paulo, v. 24, n. 3, p. 62–107, 2022. DOI: 10.23925/1983-3156.2022v24i3p062-107. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/56423. Acesso em: 23 nov. 2024.