Situações para a aprendizagem da prova - em matemática: Estado da pesquisa e questões em aberto
DOI:
https://doi.org/10.23925/1983-3156.2024v26i2p281-343Palavras-chave:
Didática da matemática, Teoria das situações didáticas, Prova, Demonstração, ArgumentaçãoResumo
Pesquisas sobre a complexidade epistêmica, lógica e discursiva da aprendizagem de provas têm gerado uma literatura abundante nas últimas duas décadas. Seus resultados contribuem para uma compreensão mais precisa das dificuldades encontradas pelos alunos e do trabalho dos professores. Sustentam a concepção de situações, em particular situações de validação no sentido da Teoria das Situações Didáticas (TSD) (Brousseau,1998), em que a prova funciona como ferramenta de resolução de problemas. No entanto, permanece a dificuldade de apreender a prova como objeto, a fim de reconhecer suas especificidades matemáticas e institucionalizá-la como tal. Este é o problema de que trata este texto. Este texto complementa as apresentações feitas no Seminário Nacional de Didática da Matemática, em 2017, e no [1]CORFEM, em 2019. O objetivo comum a essas três palestras era aprender e ensinar a prova antes da sua introdução [2]como uma forma canônica de prova em matemática. Após uma introdução que recorda o contexto institucional e científico, a primeira parte (secções 2 a 4) é dedicada ao estado da investigação, retomando os relatórios de trabalhos significativos, relacionados com diferentes abordagens; e a segunda parte (secção 5) apresenta propostas para formar uma base para a investigação futura. A conclusão centra-se nas questões abertas pela necessidade de engenharia situacional específica para incentivar e acompanhar a gênese e o reconhecimento dos padrões de prova na sala de aula de matemática, antes do ensino explícito da prova.
Metrics
No metrics found.
Referências
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, Ray. (1995). Cognitive Tutors: Lessons Learned. Journal of the Learning Sciences, 4(2), 167 207. https://doi.org/10.1207/s15327809jls0402_2
Anderson, T., & Shattuck, J. (2012). Design-Based Research: A Decade of Progress in Education Research? Educational Researcher, 41(1), 16 25. https://doi.org/10.3102/0013189X11428813
Arsac, G. (1988). Les recherches actuelles sur l’apprentissage de la démonstration et les phénomènes de validation en France. Recherches en Didactique des Mathématiques, 9(3), 247 280.
Arsac, G. (2018). Naissance et premiers pas du problème ouvert à l’IREM de Lyon [Allocution pour les 50 ans de l’IREM de Lyon, in: Brève 196, 27 juin 2018].
Arsac, G., Balacheff, N., & Mante, M. (1992). Teacher’s role and reproducibility of didactical situations. Educational Studies in Mathematics, 23(1), 5 29. https://doi.org/10.1007/BF00302312
Arsac, G., Colonna, A., & Chapiron, G. (1992). Initiation au raisonnement déductif au collège. Presses Universitaires de Lyon.
Arsac, G., & Mante, M. (1983). Des « problèmes ouverts » dans nos classes de premier cycle. Petit x, 2, 5 33.
Arsac, G., & Mante, M. (1996). Situations d’initiation au raisonnement déductif. Educational Studies in Mathematics, 33, 21 43.
Artigue, M. (Réalisateur). (2018, décembre 21). Démarches d’investigation, problèmes ouverts, recherche didactique. https://www.youtube.com/watch?v=A1PNXDCJmTo
Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM, 45(6), 797 810. https://doi.org/10.1007/s11858-013-0506-6
Arzarello, F., & Bussi, M. G. B. (1998). Italian trends in research in mathematical education: A national case study from an un international perspective. In A. Sierpinska, & J. Kilpatrick (Éds.), Mathematics Education as a Research Domain: A Search for Identity (Vol. 4, pp. 2). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5196-2_1
Austin, J. L. (1950). In G. Longworth (Éd.), Truth (The virtual issue n°1-2013). The Aristotelian Society. https://www.aristoteliansociety.org.uk/pdf/2013%20AS%20Virtual%20Issue.pdf
Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18(2), 147 176. https://doi.org/10.1007/BF00314724
Balacheff, N. (1988). Une étude des processus de preuve en mathématique chez des élèves de collège [Doctorat ès-sciences]. Université Joseph Fourier - Grenoble 1.
Balacheff, N. (1990). Beyond a psychological approach of the psychology of mathematics education. For The Learning of Mathematics, 10(3), 2 8.
Balacheff, N. (1999). L’argumentation est-elle un obstacle ? Invitation à un débat... [Newsletter]. La lettre de la preuve. http://www.lettredelapreuve.org/OldPreuve/Newsletter/990506Theme/990506ThemeFR.html
Balacheff, N. (2001). Symbolic Arithmetic vs Algebra the Core of a Didactical Dilemma. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Éds.), Perspectives on School Algebra (pp. 249 260). Springer Netherlands. https://doi.org/10.1007/0-306-47223-6_14
Balacheff, N. (2019a). Contrôle, preuve et démonstration. Trois régimes de la validation. In J. Pilet, & C. Vendeira (Éds.), Actes du Séminaire National de Didactique des Mathématiques 2018 (pp. 423 456). ARDM et IREM de Paris - Université de Paris Diderot. https://hal.archives-ouvertes.fr/hal-02333720
Balacheff, N. (2019b). L’argumentation mathématique, précurseur problématique de la démonstration. 29. XXVIe Colloque CORFEM, Jun 2019, Strasbourg, France.
Balacheff, N. (2023). Notes for a study of the didactic transposition of mathematical proof (p. 27) [Preprint].
Ball, D. L. (1991). Implementing the NCTM Standards: Hopes and Huompletarrdles. 20.
Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of teaching Elementary School mathematics. The Elementary School Journal, 93(4), 373 397. http://www.jstor.org/stable/1002018
Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. In J. Kilpatrick, W. G. Martin, & D. Schifter (Éds.), A research Companion to Principles and Standards for School Mathematics (pp. 27 44). NCTM. https://www.researchgate.net/profile/Hyman-Bass/publication/312532588_Making_mathematics_reasonable_in_school/links/5f943d3f299bf1b53e40ca68/Making-mathematics-reasonable-in-school.pdf
Ball, D. L., Lewis, J., Thames, M., & Hoover. (2008). Making Mathematics Work in School. In National Council of Teachers of Mathematics. Study of Teaching: Multiple Lenses, Multiple Views. NCTM Monograph N°14 (pp. 13 44, 195 201). National Council of Teachers of Mathematics. https://www.jstor.org/stable/30037740
Bartolini Bussi, M. G. (1996). Mathematical discussion and perspective drawing in primary school: To Giovanni Prodi on occasion of his 70th birthday. Educational Studies in Mathematics, 31(1 2), 11 41. https://doi.org/10.1007/BF00143925
Boero, P., Consogno, V., Guala, E., & Gazzolo, T. (2009). Research for innovation: A teaching sequence on the argumentatiive approach to probabilistic thinking in grades I-IV and some related basic research results. Recherches en Didactique des Mathématiques, 29(1), 56 96.
Boero, P., Dapueto, C., Ferrari, P., Ferrero, E., Garuti, R., Lemut, E., Parenti, L., & Scali, E. (1995). Aspects of the mathematics—Culture relationship in mathematics teaching-learning in compulsory school. In L. Meira et D. Carraher (Éds.), Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education (17 pages). http://didmat.dima.unige.it/progetti/COFIN/biblio/art_boero/boero%26c_PME_XIX.pdf
Boero, P., & Douek, N. (2008). La didactique des domaines d’experience. Carrefours de l’éducation, 26(2), 99. https://doi.org/10.3917/cdle.026.0099
Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In M. M. F. Pinto, & T. F. Kawasaki (Éds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 179 209). PME.
Brousseau, G. (1972). Processus de mathématisation. In APMEP (Éd.), La mathématique à l’école élémentaire (pp. 428 442). Association des Professeurs de Mathématiques de l’Enseignement Public.
Brousseau, G. (1975). Epistémologie expérimentale vs Didactique [Blog]. Guy Brousseau. https://guy-brousseau.com/3297/1975-epistemologie-experimentale-vs-didactique-2016/
Brousseau, G. (1978). Les obstacles épistémologiques et les problèmes en mathématiques. Recherches en Didactique des Mathématiques, 4(2), 165 198.
Brousseau, G. (1981). Problèmes de didactique des décimaux. Recherches en Didactique des Mathématiques, 2(1), 37 127.
Brousseau, G. (1984). Le rôle du maître et l’institutionnalisation. Actes de la III° Ecole d’Eté de Didactique des Mathématiques. III° Ecole d’Eté de Didactique des Mathématiques. http://guy-brousseau.com/wp-content/uploads/2012/03/84-11-R%C3%B4le-du-Ma%C3%AEtre.pdf
Brousseau, G. (1986). Fondements et méthodes de la didactique des mathématiques. Recherches en Didactique des Mathématiques, 7(2), 33 115. https://revue-rdm.com/1986/fondements-et-methodes-de-la/
Brousseau, G. (1998). Théorie des situations didactiques (Didactique des mathématiques 1970-1990). La Pensée Sauvage.
Brousseau, G., & Gibel, P. (2002). Influence des conditions didactiques sur l’apparition, l’usage et l’apprentissage des raisonnements en classe. Actes du Séminaire National de Didactique des Mathématiques, 205 230.
Cobb, P., Perlwitz, M., & Underwood, D. (1994). Construction individuelle, acculturation mathématique et communauté scolaire. Revue des Sciences de l’Education, 20(1), 41. https://doi.org/10.7202/031700ar
Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3/4), 175 190.
Cuq, J.-P., & Gruca, I. (2017). Cours de didactique du français langue étrangère et seconde. Presse Universitaire de Grenoble.
Dhombres, J. (2008). La preuve mathématique en tant qu’elle est épreuve de mémoire. Communications, 84(1), 59 84. https://doi.org/10.3406/comm.2008.2507
Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches en Didactique des Mathématiques, 7(2), 5 31.
Dreyfus, T., Nardi, E., & Leikin, R. (2012). Forms of proof and proving in the classroom. In G. Hanna, & M. de Villiers (Éds.), Proof and proving in mathematics education (Vol. 15, pp. 191 213). Springer Science et Business Media.
Duval, R. (1992). Argumenter, prouver, expliquer : Continuité ou rupture cognitive ? Petit x, 31, 37 61.
EDUSCOL. (2009). Raisonnement et démonstration. MENESR-DGESCO. http://cache.media.eduscol.education.fr/file/Mathematiques/50/0/doc_acc_clg_raisonnementetdemonstration_223500.pdf
EDUSCOL. (2016). Mathématiques—Raisonner. MENESR-DGESCO; http://cache.media.eduscol.education.fr/file/Competences_travaillees/83/6/RA16_C4_MATH_raisonner_547836.pdf
Ernst, D. C., Hodge, A., & Yoshinobu, S. (2017). What is inquiry-based learning? Notices of the American Mathematical Society, 64(06), 570 574. https://doi.org/10.1090/noti1536
Even, R. (2018). Classroom-based issues related to proofs and proving. In A. J. Stylianides, & G. Harel (Éds.), Advances in Mathematics Education Research on Proof and Proving (pp. 145 151). Springer International Publishing. https://doi.org/10.1007/978-3-319-70996-3_10
Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in Mathematics, 3, 413 435.
Garden, R. A., Lie, S., Robitaille, D. F., Angell, C., Martin, M. O., Mullis, I. V. S., Foy, P., & Arora, A. (2008). TIMSS Advanced 2008 assessment frameworks. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands. Tel: +31-20-625-3625; Fax: +31-20-420-7136; e-mail: department@iea.nl; Web site: http://www.iea.nl. https://timssandpirls.bc.edu/timss_advanced/frameworks.html
Georget, J.-P. (2009). Activités de recherche et de preuve entre pairs à l’école élémentaire : Perspectives ouvertes par les communautés de pratique d’enseignants [Didactique des mathématiques, Paris-Diderot]. https://tel.archives-ouvertes.fr/tel-00426603
Gravier, S., & Ouvrier-Buffet, C. (2022). The mathematical background of proving processes in discrete optimization— Exemplification with research situations for the classroom. ZDM – Mathematics Education, 54(4), 925 940. https://doi.org/10.1007/s11858-022-01400-3
Grenier, D. (2009). Changer le rapport des élèves aux mathématiques en intégrant l’activité de recherche dans les classes. Actes du Séminaire National de Didactique des Mathématiques, pp. 161 177. https://docs.irem.univ-paris-diderot.fr/up/publications/AAR10001.pdf
Grenier, D., & Payan, C. (2002). Situations de recherche en « classe » Essai de caractérisation et proposition de modélisation. Actes du Séminaire National de Didactique des Mathématiques, pp.189 203.
Grenier, D., & Payan, C. (2006). Les « situations de recherche » pour l’apprentissage de savoirs transversaux. Actes du colloque EMF 2006, 12 pages. http://emf.unige.ch/files/2814/5390/3967/EMF2006_GT6_Grenier.pdf
Hanna, G., & de Villiers, M. (Éds.). (2012). Proof and proving in mathematics education : The 19th ICMI study (corrected edition 2021). Springer.
Hanna, G., de Villiers, M., Arzarello, F., Dreyfus, T., Durand-Guerrier, V., Jahnke, H. N., Lin, F.-L., Selden, A., Tall, D., & Yevdokimov, O. (2012). ICMI Study 19: Proof and proving in mathematics education: Discussion document. In G. Hanna, & M. de Villiers (Éds.), Proof and proving in mathematics education (Vol. 15, p. 10). Springer.
Herbst, P., & Balacheff, N. (2009). Proving and knowing in public: The nature of proof in a classroom. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Éds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 40 63). Routledge.
Herbst, P., & Chazan, D. (2009). Methodologies for the study of instruction in mathematics classrooms. Recherches en Didactique des Mathématiques, 29(1), 11 32. https://revue-rdm.com/2009/methodologies-for-the-study-of/
Herbst, P., & Chazan, D. (2011). Research on practical rationality: Studying the justification of actions in mathematics teaching. The Mathematics Enthusiast, 8(3), 405 462.
Herbst, P. G. (2003). Using novel tasks in teaching mathematics: Three tensions affecting the work of the teacher. American Educational Research Journal, 40(1), 197 238. https://doi.org/10.3102/00028312040001197
Historique des actions menées par l’association MATh.en.JEANS depuis 1985. (1985, depuis). MATh.en.JEANS. https://www.mathenjeans.fr/historique-mej
Jones, K., & Herbst, P. (2012). Proof, proving, and teacher-student interaction: Theories and contexts. In G. Hanna, & M. de Villiers (Éds.), Proof and proving in Mathematics Education (Vol. 15, pp. 261 277). Springer Netherlands. https://doi.org/10.1007/978-94-007-2129-6_11
Lakatos, I. (1976). Proofs and refutations—The logic of mathematical discovery. Cambridge University Press.
Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27(1), 29 63.
Legrand, M. (1986). L’introduction du débat scientifique en situation d’enseignement. Publications de l’Institut de Recherche Mathématiques de Rennes, fascicule 5 « Didactique des mathématiques », 1988-1989 (exp. n°3), 1 16. http://www.numdam.org/item?id=PSMIR_1988-1989___5_A3_0
Legrand, M. (1993). Débat scientifique en cours de mathématiques et spécificité de l’analyse. Repères-IREM, 10, 123 159. http://www.univ-irem.fr/exemple/reperes/articles/10_article_68.pdf
Legrand, M. (1995a). Un point de vue éthique sur l’enseignement scientifique (première partie). Repère IREM, 21, 91 108.
Legrand, M. (1995b). Un point de vue éthique sur l’enseignement scientifique (deuxième partie). Repères IREM, 21, 111 139.
Legrand, M., Lecorre, T., Leroux, L., & Parreau, A. (2011). Le principe du « débat scientifique » dans un enseignement. IREM de Grenoble. http://irem.univ-grenoble-alpes.fr/spip/IMG/pdf/principedebac949.pdf
Lehmann, D. (1989). La démonstration. IREM de Lille.
Loewenberg Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389 407. https://doi.org/10.1177/0022487108324554
Maher, C. A., & Martino, A. M. (1996). The development of the idea of mathematical proof: A 5-year case study. Journal for Research in Mathematics Education, 27(2), 194. https://doi.org/10.2307/749600
Mantes, M., & Arsac, G. (2007). Les pratiques du problème ouvert. CANOPE -CRDP Lyon.
Margolinas, C. (1992). Eléments pour l’analyse du rôle du maître : Les phases de conclusion. Recherches en Didactique des Mathématiques, 12(1), 113 158.
Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective : The role of the teacher. ZDM, 41(4), 427 440. https://doi.org/10.1007/s11858-009-0199-z
Mariotti, M. A. (2021). Initiation à la preuve : La médiation des environnements informatiques. Actes de la 21e école d’été de didactique des mathématiques. 21e Ecole d’Eté de Didactique des Mathématiques, Ile de Ré.
Mariotti, M. A., Bussi, M. G. B., Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: From history and epistemology to cognition. In E. Pehkonen (Éd.), Proceedings of the 21st PME Conference (Vol. 1, pp. 180 195). University of Helsinki.
Maths à Modeler : Recherches. (2003, depuis). https://mathsamodeler.ujf-grenoble.fr/recherches.html
Mercier, A. (2012). Suivre une démarche d’investigation pour enseigner les relatifs, au collège : Une proposition pragmatique et une expérimentation, en France. In J.-L. Dorier, & S. Coutat (Éds.), Enseignement des mathématiques et contrat social : Enjeux et défis pour le 21e siècle (pp. 1423 1431). http://www.emf2012.unige.ch/index.php/actes-emf-2012
Mullis, I. V. S., Martin, Michael O. (Eds.), & International Association for the Evaluation of Educational Achievement (IEA) (Netherlands). (2017). TIMSS 2019 Assessment Frameworks. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands. Tel: +31-20- 625-3625; Fax: +31-20-420-7136; e-mail: department@iea.nl; Web site: http://www.iea.nl. http://timssandpirls.bc.edu/timss2019/frameworks/
Mullis, I. V. S., International Association for the Evaluation of Educational Achievement, & TIMSS (Éds.). (2007). TIMSS 2007 assessment frameworks. TIMSS et PIRLS International Study Center, Lynch School of Education, Boston College. https://timssandpirls.bc.edu/TIMSS2007/frameworks.html
Mullis, I. V. S., & Martin, M. O. (2014). TIMSS advanced 2015 assessment framework. TIMSS et PIRLS International Study Center.
Mullis, I. V. S., Martin, M. O., Ruddock, G., O’Sullivan, C. Y., & Preuschoff, C. (2009). TIMSS 2011 assessment frameworks. TIMSS et PIRLS International Study Center, Lynch School of Education, Boston College.
Mullis, I. V. S., Martin, M. O., & von Davier, M. (Éds.). (2021). TIMSS 2023 Assessment Frameworks. International Association for the Evaluation of Educational Achievement (IEA).
O’Connor, K. M., Mullis, I. V. S., Garden, R. A., Martin, M. O., & Gregory, K. D. (2003). TIMSS assessment frameworks and specifications 2003 (2nd ed). International Study Center. https://timssandpirls.bc.edu/timss2003i/frameworksD.html
OECD. (2019). PISA 2018 Assessment and Analytical Framework. OECD. https://doi.org/10.1787/b25efab8-enPISA Mathematics Framework. (2022). https://pisa2022-maths.oecd.org/ca/index.html#Mathematical-Reasoning
Polya, G. (1945). How to solve it (1954e éd.). Princeton University Press. https://press.princeton.edu/titles/669.html
Robert, A., & Robinet, J. (1996). Prise en compte du méta en didactique des mathématiques. Recherches en Didactique des Mathématiques, 16(2). https://revue-rdm.com/2005/prise-en-compte-du-meta-en/
Saada-Robert, M., & Brun, J. (1996). Transformations of school knowledge: The contributions and extensions of genetic psychology. Prospects, 26(1), 25 36. https://doi.org/10.1007/BF02195607
Schoenfeld, A. H. (1987). Confessions of an accidental theorist. For the Learning of Mathematics, 7(1), 30 38. http://www.jstor.org/stable/40247883
Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics, 38(3), 289 321.
Tabach, M., Hershkowitz, R., Rasmussen, C., & Dreyfus, T. (2014). Knowledge shifts and knowledge agents in the classroom. The Journal of Mathematical Behavior, 33, 192 208. https://doi.org/10.1016/j.jmathb.2013.12.001
Tall, D., Yevdokimov, O., Koichu, B., Whiteley, W., Kondratieva, M., & Cheng, Y.-H. (2012). Cognitive development of proof. In G. Hanna, & M. de Villiers (Éds.), Proof and Proving in Mathematics Education (Vol. 15, pp. 13 49). Springer Netherlands. https://doi.org/10.1007/978-94-007-2129-6_2
Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(2/3), 133 170.
Vergnaud, G. (1991). Langage et pensée dans l’apprentissage des mathématiques. Revue Française de Pédagogie, 96(1), 79 86. https://doi.org/10.3406/rfp.1991.1350
Vergnaud, G. (2011). La pensée est un geste. Comment analyser la forme opératoire de la connaissance. Enfance, 2011(01), 37. https://doi.org/10.4074/S0013754511001042
Villani, C., & Torossian, C. (2018). 21 mesures pour l’enseignement des mathématiques (La documentation française, p. 96) [Rapport public]. Ministère de L’Education Nationale. https://www.ladocumentationfrancaise.fr/rapports-publics/184000086/
Voigt, J. (1985). Patterns and routines in classroom interaction. Recherches en Didactique des Mathématiques, 6(1), 69 118.
Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458 477. https://doi.org/10.2307/749877
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).