The use of Auxiliary Representations in Mathematics Learning
a Semiocognitive Look according to Raymond Duval
DOI:
https://doi.org/10.23925/1983-3156.2022v24i1p582-610Keywords:
Auxiliary Representations, Mathematics learning, Semiocognitive learningAbstract
In this study, we sought to analyze the use of auxiliary representations in mathematics teaching from the point of view of Raymond Duval’s semiocognitive theory of mathematical learning. This analysis took as the main parameter the semiocognitive comparison between the didactic representations created and the main representation that characterizes the mathematical object under study. We observed the relevance of these representations created to better understand the semiotic systems used because they can enable the differentiation of meaningful units through treatment operation. Such differentiation is paramount for allowing the coordination of the conversion operation between the semiotic systems involved.
Metrics
References
Brousseau, G. (1986). Fondements et méthodes de la didactique des mathématiques. Recherches en Didactique des Mathématiques,7(2), 33-115.
Chevallard, Y. (2005). La transposition didáctica: del saber sabio ao saber ensinado. Trad. Claudia Gilman. Buenos Aires: Aique Grupo Editor S.A.
Durant, C. & Vergnaud, G. (1976). Structures additives et complexité psychogénétique. Revue française de pédagogie, v. 36.
Duval, R. (1995). Sémiosis et pensée humaine: registres sémiotiques et apprentissages intellectuels. Berne: Peter Lang.
Duval, R. (1996).« Quel cognitif retenir en didactique des mathématiques ?». RDM, v. 16(3).
Duval, R. (1999). Conversion et articulation des représentations analogiques. Seminaires de Recherche, IUFM Nord Pas de Calais.
Duval, R. (2003). Décrire, visualiser ou raisonner: quels “apprentissages premiers” de l'activité mathématique ? Annales de didactique et sciences cognitives. v. 8. Strasbourg :
Duval, R. (2004). Les problemas fundamentales en el aprendizaje matemáticas y las formas superiores en el desarrollo cognitivo. Tradução de Myrian V. Restrepo. Cali: Universidade del Valle.
Duval, R. (2005a). Linguaggio, simboli, immagini, schemi… In quale modo intervengono nella comprensione in matematica e altrove? Bollettino dei docenti di matematica, n. 50.
Duval, R. (2005b). Transformations de représentations sémiotiques et démarches de pensée en mathématiques. ACTES du XXXII e Colloque COPIRELEM. Strasbourg.
Duval, R. (2012). Registros de representação semiótica e funcionamento do pensamento. Trad. Méricles T. Moretti. Revemat, v. 7(2)
Franco, Patrícia L. (2008). Estudo de formas de negação no ensino da matemática: ponto de encontro com os Registros de Representação Semiótica. [Dissertação de Mestrado em Educação Científica e Tecnológica, Universidade Federal de Santa Catarina]. https://repositorio.ufsc.br/handle/123456789/91633
Frege, G. (1978). Sobre o sentido e a referência. In: Alcorado, P. (org. e trad). Lógica e filosofia da linguagem. São Paulo, Cultrix?EDUSP.
Legrand, M. (1983). Les Cosmonautes. Petit x, n. 1.
Moretti, M. T & Brandt, C. F. (2015). Construção de um desenho metodológico de análise semiótica e cognitiva de problemas de geometria que envolvem figuras. Educ. Matem. Pesq., São Paulo, v. 17, n. 2, (pp.597-616).
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).