Devolution of a problem and construction of a conjecture, the case of the sum of the angles of a triangle
DOI:
https://doi.org/10.23925/1983-3156.2022v24i1p872-950Keywords:
Devolution, Triangle, Sum of the angles of a triangle, Conception of proof.Abstract
This study is part of the research project I conducted during the 80s on junior high school students’ conceptions of proof in mathematics before the teaching of mathematical proof [in French: démonstration]. The first part of this project resulted in the identification of different types of proofs students may rely on. The second part investigated the principle of design of situations which could support an evolution of students’ conceptions of proofs likely to serve as a basis for teaching mathematical proof; this paper reports on two case studies carried out within this project. It details the principles of design, the implementation, and the analysis of a sequence of situations aimed at generating debate on proofs and refutations. It takes up the challenge of rejecting empirical proofs to open the way to intellectual proofs on which teaching could ground the introduction of mathematical proof. This translation of the report includes comments, notes (Note2020) and new references to facilitate the reading and understanding of the contemporary reader.
Metrics
References
Arsac, G., Balacheff, N., & Mante, M. (1992). Teacher’s role and reproducibility of didactical situations.
Educational Studies in Mathematics, 23(1), 5–29. https://doi.org/10.1007/BF00302312
Artigue, M. (1986). Etude de la dynamique d’une situation de classe. Recherches en didactique des mathématiques, 7(1), 5–62.
Artigue, M. (1992). Didactic engineering. In R. Douady & A. Mercier (Eds.), Researh in Didactique of mathematics (pp. 41–66). La Pensée Sauvage Éd.
Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18(2), 147–176. https://doi.org/10.1007/BF00314724
Balacheff, N. (1999). Contract and Custom: Two Registers of Didactical Interactions (P. Herbst, Trans.). The Mathematics Educator, 9(2), 23–29.
Balacheff, N. (1988). A study of students’ proving processes at the junior high school level. In I. Wirszup & R. Streit (Eds.), Proceedings of the Second UCSMP International Conference on Mathematics Education (pp. 284–297). National Council of Teachers of Mathematics, Reston, VA.
Berdonneau, C. (1981). Quelques remarques sur l’introduction à la géométrie démontrée à travers les manuels en usage dans l’enseignement post-élémentaire en France au vingtième siècle [3ième cycle]. Paris 7.
Bertrand, L. (1812). Élémens de géométrie, par Louis Bertrand. chez J.J. Paschoud, Libraire, rue Mazarine, n° 22, et à Genève, chez le même imprimeur-libraire. http://archive.org/details/bub_gb_vPOOZDSnm0oC
Brousseau, G. (1984a). Le rôle du maître et l’institutionnalisation. Actes de La III° École d’été de Didactique Des Mathématiques. III° école d’été de didactique des mathématiques. http://guy-brousseau.com/wp- content/uploads/2012/03/84-11-R%C3%B4le-du-Ma%C3%AEtre.pdf
Brousseau, G. (1986). La théorisation des phénomènes d’enseignement des mathématiques. [Thèse de doctorat d’Etat]. Université Bordeaux 1.
Brousseau, G. (1997). Theory of didactical situations in mathematics (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Trans.). Kluwer Academic publishers.
Brousseau, G. (1984b). Etudes de questions d’enseignement. Un exemple, la géométrie. Séminaire de Didactique Des Mathématiques et de l’informatique, 45.
Choquet, G. (1964). L’enseignement de la géométrie (reprint 1966). Hermann.
Clairaut, A. C. (1741). Elemens de géométrie (1753rd ed.). David fils. https://gallica.bnf.fr/ark:/12148/bpt6k15218356
Close, G. S. (1982). Children’s understanding of angle at the primary / secondary transfer age [Master of science].
Polytechnic of the South Bank.
Devichi, C., & Munier, V. (2013). About the concept of angle in elementary school: Misconceptions and teaching sequences. The Journal of Mathematical Behavior, 32(1), 1–19. https://doi.org/10.1016/j.jmathb.2012.10.001
E. Rich (Ed.). (1969). Mathématiques 6°. Hatier.
Fishbein, E. (1982). Intuition and proof. For The Learning of Mathematics, 3(2), 9–18.
Fourrey, E. (1938). Curiosités géométriques (Deuxième édition). Vuibert et Nony éditeurs. https://gallica.bnf.fr/ark:/12148/bpt6k875649b
Giles, G. (1981). School mathematics under examination 3: Factors affecting the learning of mathematics. University of Stirling. https://www.worldcat.org/title/school-mathematics-under-examination-3- factors-affecting-the-learning-of-mathematics/oclc/15789298&referer=brief_results
Grosgurin, L. (1926). Enseignement de la géométrie. Méthodologie (1944th ed.). Payot & Cie.
Halbwachs, F. (1981). Significations et raison dans la pensée scientifique. Archives de Psychologie, XLIX(190), 199– 229.
Heath, T. L. (1921). A history of Greek mathematics (1981st ed., Vol. 1). Dover Publications Ltd.
Heath, T. L. (1956). The thirteen books of Euclid elements (Second edition revised with additions, Vol. 1). Dover Publications, Inc.
Henrici, O. (1879). Elementary geometry: Congruent figures. Longmans, Green. http://archive.org/details/elementarygeome00henrgoog
Hilbert, D. (1899). The foundation of geometry (E. J. Townsend, Trans.; Reprint edition, 1950). The Open Court Publishing Company. https://math.berkeley.edu/~wodzicki/160/Hilbert.pdf
IREM de Grenoble. (1985). Apprentissage du raisonnement. UGA, IREM de Grenoble.
Lakatos, I. (1976). Proofs and refutations—The logic of mathematical discovery. Cambridge University Press.
Le Rest, E. (1982). Il faut que j’y pense encore (les axiomes de la géométrie). In Commission inter-IREM épistémologie et histoire des mathématiques (Ed.), La rigueur et le calcul. CEDIC-Nathan.
Legendre, A. M. (1833). Réflexions sur les différentes manières de démontrer la théorie des parallèles. Mémoires de l’Académie des sciences de l’Institut de France, XII, 367–412.
Legendre, A.-M. (1794). Éléments de géométrie, avec des notes. Par Adrien-Marie Legendre. https://gallica.bnf.fr/ark:/12148/bpt6k5720354t
Legrand, M. (1986). L’introduction du débat scientifique en situation d’enseignement. Publications de l’Institut de recherche mathématiques de Rennes, fascicule 5 « Didactique des mathématiques », 1988-1989 (exp. n°3), 1–16.
Legrand, M. (1993). Débat scientifique en cours de mathématiques et spécificité de l’analyse. Repères-IREM, 10, 123–159.
Legrand, M. (2001). Scientific Debate in Mathematics Courses. In D. Holton, M. Artigue, U. Kirchgräber, J. Hillel.
M. Niss, & A. Schoenfeld (Eds.), The Teaching and Learning of Mathematics at University Level: An ICMI Study (pp. 127–135). Springer Netherlands. https://doi.org/10.1007/0-306-47231-7_12
Legrand, M. (2002). Scientific Debate in Mathematics Courses. In D. Holton, M. Artigue, U. Kirchgräber, J. Hillel.
M. Niss, & A. Schoenfeld (Eds.), The Teaching and Learning of Mathematics at University Level (Vol. 7, pp. 127–135). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47231-7_12
Mach, E. (1908). La connaissance et l’erreur. Flammarion. https://gallica.bnf.fr/ark:/12148/bpt6k655583 Papy, G. (1967). Voici Euclide (Vol. 3). Editions M. Didier.
Queysanne, & Revuz (Eds.). (1972). Mathématiques 3°. Fernand Nathan.
Smith, D. E. (1925). History of mathematics (Unaltered republication, 1958, Vol. 2). Dover Publications, Inc. Stylianides, A. J. (2007). The Notion of Proof in the Context of Elementary School Mathematics. Educational Studies in Mathematics, 65(1), 1–20. https://doi.org/10.1007/s10649-006-9038-0
Tanguay, D., & Venant, F. (2016). The semiotic and conceptual genesis of angle. ZDM, 48(6), 875–894. https://doi.org/10.1007/s11858-016-0789-5
Thuret, M. (1934). Précis de géométrie. Librairie Fernand Nathan.
Vergnaud, Gérard. (1981). Quelques orientations théoriques et méthodologiques des recherches françaises en didactique des mathématiques. Recherche En Didactique Des Mathématiques, 2(2), 215–231.
Vergnaud, Gérard. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(2/3), 133–170.
Vergnaud, Gérard. (2001). Forme opératoire et forme prédicative de la connaissance. 22. Vergnaud, Gerard. (2009). The Theory of Conceptual Fields. . . Human Development, 52, 83–94. Watzlawick, P. (1976). How real is real? Random House.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).