Transversal character of argumentation in the mathematics curriculum
DOI:
https://doi.org/10.23925/1983-3156.2025v27i5p030-056Keywords:
Argumentation, Ontosemiotic approach, Mathematics teachers in initial training, Curriculum, Learning situationAbstract
According to the Ontosemiotic Approach to Mathematical Knowledge and Instruction (OSA), arguments are primary mathematical objects, composed of statements that allow the validation or explanation of propositions and procedures. Syllogisms make feasible the classification of mathematical statements, but argumentation is not exclusive to mathematical processes and appears in the curriculum in relation to other areas of knowledge. This study analyses the presence and use of the notions of argumentation in compulsory and pre-university Secondary School curriculum in Spain, with the objective of identifying transversal areas to mathematics, for the design of learning situations that have in their core the notion of argumentation. In the experimental phase, mathematics Teachers in Initial Training (TIT) design potential learning situations in transversal fields based on argumentation. Finally, these designs are analysed to determine which areas of knowledge TITs relate. Moreover, the argumentation used within the learnings situations shows which dimensions of didactic suitability enhance those proposals.
References
AAlbizu, U. (2024). Matematika, hezkuntza eta generoa gurutzatzen diren lekuen kartografia bat. Elhuyar, 356, 76-79.
Botana, F., Hohenwarter, M., Janicic, P., Kovacs, Z., Petrovic, I., Recio, T., & Weitzhofer, S. (2015). Automated Theorem Proving in GeoGebra: Current Achievements. Journal of Automated Reasoning, 55(1), 39-59.
Brousseau, G. (1998). Théorie des situations didactiques. Grenoble : La pensée sauvage, éditions.
Coelho, F., & Alvarenga, M. A. (2024). A natureza das estruturas globais de argumentação em um contexto de ensino baseado em argumentação coletiva. Educação Matemática Pesquisa, 26(1). https://doi.org/10.23925/1983-3156.2024v26i1p418-448
Gobierno de Navarra (GN). (2022a). Decreto Foral 71/2022, de 29 de junio, publicado en el Boletín Oficial de Navarra número 155, de 4 de agosto de 2022, por el que se establece el Currículo de las Enseñanzas de la Etapa de Educación Secundaria Obligatoria en la Comunidad Foral de Navarra.
Gobierno de Navarra (GN). (2022b). Decreto Foral 72/2022, de 29 de junio, publicado en el Boletín Oficial de Navarra número 170, de 26 de agosto de 2022, por el que se establece el Currículo de las Enseñanzas de la Etapa de Bachillerato en la Comunidad Foral de Navarra.
Godino, J.D. (2024). Enfoque ontosemiótico de educación matemática. Fundamentos, herramientas y aplicaciones. Editorial Aula Magna.
Godino, J. D., Wilhelmi, M. R., Blanco, T. F., Contreras, A., & Giacomone, B. (2016). Análisis de la actividad matemática mediante dos herramientas teóricas: Registros de representación semiótica y configuración ontosemiótica. Avances de Investigación en Educación Matemática, 10, 91-110
Lasa, A., & Wilhelmi, M.R. (2013). Use of GeoGebra in explorative, illustrative and demonstrative moments. Revista do Instituto GeoGebra de São Paolo, 2(1), 52-64.
Lasa, A., Wilhelmi, M.R., & Abaurrea, J. (2017). El problema de la argumentación: una aproximación desde el EOS. En J.M. Contreras, P. Arteaga, G.R. Cañadas, M.M. Gea, B. Giacomone y M.M. López-Martín (Eds.), Actas del Segundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. Disponible en, www.enfoqueontosemiotico.ugr.es/civeos.html
Manrique, V.H., & Soler-Álvarez, M.N. (2014). El proceso de descubrimiento en la clase de matemáticas: los razonamientos abductivo, inductivo y deductivo. Enseñanza de las Ciencias, 32(2), 191-219.
Molina, O., Font., V., & Pino-Fan, L. (2019). Estructura y dinámica de argumentos analógicos, abductivos y deductivos: un curso de geometría del espacio como contexto de reflexión. Enseñanza de las Ciencias, 37(1), 93-116.
Rondero, C., & Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Enseñanza de las Ciencias, 33(2), 29-49.
Viana, J. M., & Almouloud, S. A. (2013). O modelo de Toulmin e a análise da prática da argumentação em matemática. Educação Matemática Pesquisa, 15(2), 487-512. https://revistas.pucsp.br/index.php/emp/article/view/14592.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).