Twenty unpublished sphere construction cases modeled with the help of GeoGebra
DOI:
https://doi.org/10.23925/2237-9657.2021.v10i2p005-025Keywords:
Esfera, Lugares Geométricos, Geometría Sintética, Geometría Descriptiva, Geometría Dinámica, GeoGebra.Abstract
Geometric places are an essential part in solving complex geometric problems, since their own definition represents a way of isolating their possible solutions by applying Euclidean deductive reasoning. One of the fields of application of the most useful three-dimensional geometric places from the didactic point of view is the determination of the center and radius of a sphere. Although these types of problems have gained importance with the origin and emergence of Descriptive Geometry, many of them have been discarded in recent years due to the difficulty of their graphic representation. The emergence of computer programs oriented to dynamic 3D geometry allowed the return to situations whose geometric approaches made their resolution almost impossible in the past. In this communication, twenty unpublished cases of determination of the center and radius of a sphere are presented, as the preliminary review made by the author demonstrates this, whose solutions were found and validated with the support of the GeoGebra software, following a methodology developed and proposed by the author, in order to allow the construction of conjectures, however, without intending to present mathematical tests here.
Downloads
Metrics
References
CASTILLA, A. et al. Foro de Trazoide. Dibujo Técnico, Geometría y CAD. Disponible en: https://trazoide.com/foro/index.php> Acceso en: 20 de enero de 2020.
DI PIETRO, D. Geometría Descriptiva. Buenos Aires: Librería y Editorial Alsina, 1962.
FONT ANDREU, J. et al. Aplicación práctica de métodos 2D para el modelado geométrico 3D. XVIII Congreso Internacional de Ingeniería Gráfica: diseño e innovación: actas del congreso: Sitges 31 de Mayo, 1 y 2 de Junio de 2006. Sitges, Barcelona. Disponible en: < https://www.semanticscholar.org/paper/Aplicaci%C3%B3n-pr%C3%A1ctica-de-m%C3%A9todos-2D-para-el-modelado-Andreu-Abad/51785eef270b3343258405bb8d61b3e7e463042d> Acceso en: 12 de febrero de 2020.
GORDON, V.O.; IVANOV, Y. E. y SOLNTSEVA, T. E. Problemas de Geometría Descriptiva. Moscú: Editorial Mir, 1974.
GORDON, V.O.; SEMENTSOV, M. A. y OGUIYEVSKI, O. Moscú: Editorial Mir, 1973.
LEHMANN, C. Geometría Analítica. México: Editorial Limusa. México, 2006.
MONGE, G. (1827). Géométrie Descriptive. Augmentée d’une Théorie des Ombres et de la Perspective. (5° Ed.). París: Bachelier, 1827.
OSERS, H. Estudio de Geometría Descriptiva (13° Ed.). Caracas: Editorial Torino, 2006.
PUIG ADAM, P. Curso de Geometría Métrica. Tomos I y II (14° Ed.). Madrid: Gómez Puig Ediciones, 1979.
RODRÍGUEZ DE ABAJO, F. Geometría Descriptiva. Sistema Diédrico. Barcelona, España: Casa Editorial Bosch, 1958.
RONDÓN, A. y TÉLLEZ, M. Sistemas de Representación. Mérida, Venezuela: Consejo de Publicaciones de la Universidad de Los Andes, 1985.
SCHUMANN, H. Introduction to Conics with Cabri 3D. Revista EduMath 20, 2005. Disponible en: <http://hkame.vela.hk/uploaded_files/magazine/20/354.pdf>. Acceso en: 10 de enero de 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista do Instituto GeoGebra Internacional de São Paulo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Submission, processing, and publication of articles sent to the journal and registration of the DOI at Crossref is free of charge.
Authors retain their copyright and grant the journal the right of first publication of their article, which is simultaneously licensed under a Creative Commons - Attribution 4.0 International license CC BY that allows others to share the article by acknowledging its authorship and initial publication by the journal.
The GeoGebra journal encourages its authors to register their work with information and communication management systems aimed at researchers, such as Academia.edu, Mendeley, ResearchGate, etc.