Twenty unpublished sphere construction cases modeled with the help of GeoGebra

Authors

DOI:

https://doi.org/10.23925/2237-9657.2021.v10i2p005-025

Keywords:

Esfera, Lugares Geométricos, Geometría Sintética, Geometría Descriptiva, Geometría Dinámica, GeoGebra.

Abstract

Geometric places are an essential part in solving complex geometric problems, since their own definition represents a way of isolating their possible solutions by applying Euclidean deductive reasoning. One of the fields of application of the most useful three-dimensional geometric places from the didactic point of view is the determination of the center and radius of a sphere. Although these types of problems have gained importance with the origin and emergence of Descriptive Geometry, many of them have been discarded in recent years due to the difficulty of their graphic representation. The emergence of computer programs oriented to dynamic 3D geometry allowed the return to situations whose geometric approaches made their resolution almost impossible in the past. In this communication, twenty unpublished cases of determination of the center and radius of a sphere are presented, as the preliminary review made by the author demonstrates this, whose solutions were found and validated with the support of the GeoGebra software, following a methodology developed and proposed by the author, in order to allow the construction of conjectures, however, without intending to present mathematical tests here.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Jorge Luis Calderón Salcedo, Universidad de Los Andes

Professor do Departamento de Ciências Aplicadas e Humanísticas da Faculdade de Engenharia. Engenheiro Mecânico e Mestre em Educação, com especialização em Ciência da ComputaçãoDiretor da Escola Básica da Faculdade de Engenharia da ULA

References

CASTILLA, A. et al. Foro de Trazoide. Dibujo Técnico, Geometría y CAD. Disponible en: https://trazoide.com/foro/index.php> Acceso en: 20 de enero de 2020.

DI PIETRO, D. Geometría Descriptiva. Buenos Aires: Librería y Editorial Alsina, 1962.

FONT ANDREU, J. et al. Aplicación práctica de métodos 2D para el modelado geométrico 3D. XVIII Congreso Internacional de Ingeniería Gráfica: diseño e innovación: actas del congreso: Sitges 31 de Mayo, 1 y 2 de Junio de 2006. Sitges, Barcelona. Disponible en: < https://www.semanticscholar.org/paper/Aplicaci%C3%B3n-pr%C3%A1ctica-de-m%C3%A9todos-2D-para-el-modelado-Andreu-Abad/51785eef270b3343258405bb8d61b3e7e463042d> Acceso en: 12 de febrero de 2020.

GORDON, V.O.; IVANOV, Y. E. y SOLNTSEVA, T. E. Problemas de Geometría Descriptiva. Moscú: Editorial Mir, 1974.

GORDON, V.O.; SEMENTSOV, M. A. y OGUIYEVSKI, O. Moscú: Editorial Mir, 1973.

LEHMANN, C. Geometría Analítica. México: Editorial Limusa. México, 2006.

MONGE, G. (1827). Géométrie Descriptive. Augmentée d’une Théorie des Ombres et de la Perspective. (5° Ed.). París: Bachelier, 1827.

OSERS, H. Estudio de Geometría Descriptiva (13° Ed.). Caracas: Editorial Torino, 2006.

PUIG ADAM, P. Curso de Geometría Métrica. Tomos I y II (14° Ed.). Madrid: Gómez Puig Ediciones, 1979.

RODRÍGUEZ DE ABAJO, F. Geometría Descriptiva. Sistema Diédrico. Barcelona, España: Casa Editorial Bosch, 1958.

RONDÓN, A. y TÉLLEZ, M. Sistemas de Representación. Mérida, Venezuela: Consejo de Publicaciones de la Universidad de Los Andes, 1985.

SCHUMANN, H. Introduction to Conics with Cabri 3D. Revista EduMath 20, 2005. Disponible en: <http://hkame.vela.hk/uploaded_files/magazine/20/354.pdf>. Acceso en: 10 de enero de 2020.

Published

2021-12-27

How to Cite

Calderón Salcedo, J. L. (2021). Twenty unpublished sphere construction cases modeled with the help of GeoGebra. Journal of the GeoGebra International Institute of São Paulo, 10(2), 005–025. https://doi.org/10.23925/2237-9657.2021.v10i2p005-025

Issue

Section

Artigos