Exploring a right triangle property using GeoGebra

Authors

DOI:

https://doi.org/10.23925/2237-9657.2022.v11i1p085-100

Keywords:

geometric property, Exploration, GeoGebra

Abstract

In this article we study and discuss the exploration of a geometric property of the right triangle. In particular, using the GeoGebra dynamic geometric environment, we intend to discover the relationship between the length of the hypotenuse of the right triangle and the length of its median, as well as devise paths for its validation. Four different approaches were taken in the study of the geometric property, highlighting the following aspects from the exploration: 1) the need to define resistant geometric figures so that they preserve the invariant properties of the figures; 2) the particular examples provide very limited evidence for mathematical validation, whereas the generalizable examples allow us to devise paths for the mathematical proof; and 3) the variety of intervening mathematical objects and the connections between them enhance a deeper learning.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

José António Fernandes, Universidade do Minho

Departamento de Estudos Integrados de Literacia, Didáctica e Supervisão

References

Alves, M. P., & Fernandes, J. A. (2015). Alterações do programa de matemática do ensino básico português: o caso do tema Organização e Tratamento de Dados. Olh@res, 3(1), 280-305.

Ausubel, D., Novak, J., & Hanesian, H. (1980). Psicologia educacional. Rio de Janeiro: Interamericana.

Courant, R., & Robbins, H. (1996). What is mathematics?: an elementary approach to ideas and methods. New York: Oxford University Press. (Publicação revista por Ian Stewart, original de 1941.)

Crowley, M. L. (1987). The van Hiele Model of the Development of Geometric Thought. In Mary M. Lindquist & Albert P. Shulte (Eds.), Learnig and Teaching Geometry, K-12 (1987 Yearbook, pp. 1-16). Reston: NCTM.

Davis, P. J., & Hersh, R. (1995). A Experiência matemática. Lisboa: Gradiva. (Tradução portuguesa do original de 1981.)

Fernandes, J. A. (2006). Tecnologias no ensino da matemática: Aplicação de um programa de geometria dinâmica no estudo da geometria. Braga: Centro de Formação Prof. Agostinho Manuel da Silva.

Fernandes, J. A., & Vaz, O. (1998). Porquê usar tecnologia nas aulas de matemática? Boletim da SPM, 39, 43-55.

Fischbein, E. (1990). Intuition and information processing in mathematical activity. International Journal of Educational Research, 14, 31-50.

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127- 135.

Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas. Bolema, 31(57), 90-113.

Junqueira, M. (1996). Exploração de construções geométricas em ambientes computacionais dinâmicos. Quadrante, 5(1), 61-108.

Ministério da Educação e Ciência (2013). Programa e Metas Curriculares Matemática: Ensino básico. Lisboa: Autor.

Ministério da Educação e Ciência (2014). Programa e Metas Curriculares Matemática A: Ensino secundário. Lisboa: Autor.

Poincaré, H. (1932). La valeur de la science. Paris: Ernest Flammarion.

Poincaré, H. (1974). La creación matemática. In M. Kline (Ed.), Matemáticas en el mundo moderno (pp. 14-17). Madrid: Editorial Blume.

Skemp, R. R. (1993). The psychology of learning mathematics. Hillsdale: Lawrence Erlbaum Associates.

Zbiek, R. M. (1995). Reaction to Harvey, Waits, and Demana's article. The Journal of Mathematical Behavior, 14(1), 133-137.

Published

2022-06-07

How to Cite

Fernandes, J. A. (2022). Exploring a right triangle property using GeoGebra. Journal of the GeoGebra International Institute of São Paulo, 11(1), 085–100. https://doi.org/10.23925/2237-9657.2022.v11i1p085-100

Issue

Section

Artigos