Inventive appropriation of GeoGebra

mathematical activity in the interaction between teachers and a dynamic environment

Authors

DOI:

https://doi.org/10.23925/2237-9657.2025.v14i2p087-103

Keywords:

dynamic geometry environment, linear regression, instrumental genesis

Abstract

This article investigates how the inventive use of GeoGebra can alter mathematical activity, based on the analysis of the resolution of a geometric problem from the 19th Brazilian Public School Mathematics Olympiad (OBMEP) by mathematics teachers. The qualitative research was guided by the lenses of Instrumental Genesis and the potentialities of dynamic geometry environments. The adopted methodology involved audio and video recording and analysis of participants’ interactions with GeoGebra. The study revealed moments of tool instrumentalization, cognitive reorganizations, and both reconstruction and construction of new mathematical knowledge. The proposed activity promoted the construction of a dynamic geometric figure, the exploration of relationships between area and linear function, and culminated in the construction of a piecewise function via linear regression. The results indicate that proposals aligned with the creative use of GeoGebra can foster an epistemic learning environment in which participants develop their own strategies and transform mathematical concepts.

Author Biographies

Tiago Vencato Martins, Universidade Federal do Rio Grande do Sul

.

Robson da Silva Hessler, Universidade Federal do Rio Grande do Sul

.

Márcia Rodrigues Notare , Universidade Federal do Rio Grande do Sul

.

Marcus Vinicius de Azevedo Basso, Universidade Federal do Rio Grande do Sul

.

References

Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt Für Didaktik Der Mathematik, 34(3), 66–72. https://doi.org/10.1007/BF02655708

Battista, M. (2007). The development of geometrical and spatial thinking. Em Second Handbook of Research on Mathematics Teaching and Learning (p. 843–908).

De Bock, D., Verschaffel, L., Janssens, D., Puig, L., & Gutiérrez, A. (1996, janeiro 1). The illusion of linearity: A persistent obstacle in pupils’ thinking about problems involving length and area of similar plane figures. Em Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2). Universitat de València, Dept. de Didàctica de la Matemàtica; Valencia, Spain.

IMPA. (2025). Olimpíada Brasileira de Matemática das Escolas Públicas. Olimpíada Brasileira de Matemática das Escolas Públicas. http://www.obmep.org.br/provas.htm

Papert, S. M. (1985). Logo: Computadores e educação. Brasiliense.

Piaget, J. (1995). Abstração reflexionante: Relações lógico-aritméticas e ordem das relações espaciais (Fernando Becker & Petronilha Beatriz Gonçalves e Silva, Trads.). Artes Médicas.

Rabardel, P. (1995). Les hommes et les technologies; approche cognitive des instruments contemporains. Armand Colin. https://hal.science/hal-01017462

Roberts, D. L., Leung, A. Y. L., & Lins, A. F. (2013). From the Slate to the Web: Technology in the Mathematics Curriculum. Em M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Orgs.), Third International Handbook of Mathematics Education (p. 525–547). Springer New York. https://doi.org/10.1007/978-1-4614-4684-2_17

Salin, E. B. (2014). Matemática dinâmica: Uma abordagem para o ensino de funções afim e quadrática a partir de situações geométricas. https://lume.ufrgs.br/handle/10183/108425

Sinclair, N., & Robutti, O. (2013). Technology and the Role of Proof: The Case of Dynamic Geometry. Em M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Orgs.), Third International Handbook of Mathematics Education (p. 571–596). Springer New York. https://doi.org/10.1007/978-1-4614-4684-2_19

Published

2025-12-02

How to Cite

Martins, T. V., Tumelero Fetter, B. ., Hessler, R. da S., Notare , M. R., & Basso, M. V. de A. (2025). Inventive appropriation of GeoGebra: mathematical activity in the interaction between teachers and a dynamic environment. Journal of the GeoGebra International Institute of São Paulo, 14(2), 087–103. https://doi.org/10.23925/2237-9657.2025.v14i2p087-103

Issue

Section

Artigos