Interactive Simulation with GeoGebra for Damped Systems with Base Excitation
DOI:
https://doi.org/10.23925/2237-9657.2024.v14i2p009-030Keywords:
vibration, resonance, interactive simulationAbstract
This work addresses the modeling, analysis, and simulation of a damped system with base excitation, using the Lagrangian formalism to derive the equations of motion. The simulation was developed in GeoGebra and allowed for the visualization of the system's behavior. The results indicate that when the damping factor ξ is less than 1, resonance occurs as the excitation frequency approaches the natural frequency of the system, resulting in significant amplifications of the vibrational response. For ξ ≥ 1, the resonant behavior is eliminated, highlighting the role of damping in dissipating energy and controlling the dynamic response of the system. In addition to the quantitative analysis, the interactive approach proved to be an effective tool for understanding phenomena such as resonance and displacement transmissibility. The simulation allowed for the visualization of the transition between the transient and steady-state regimes, highlighting the influence of damping on the dissipation of initial conditions.
References
Abdel-Rohman, M., & John, M. J. (2006). Control of wind-induced nonlinear oscillations in suspension bridges using multiple semi-active tuned mass dampers. Journal of Vibration and Control, 12(9), 1011-1046. DOI: https://doi.org/10.1177/1077546306069035
Alves, F. R. V. (2024). História da Matemática e Tecnologia: visualização de sequências recorrentes, algumas propriedades e a noção de Tabuleiro 2D/3D. Revista do Instituto GeoGebra Internacional de São Paulo, 13(3), 045-064. DOI: https://doi.org/10.23925/2237-9657.2024.v13i3p045-064
Braghin, F., Cinquemani, S., & Resta, F. (2013). A new approach to the synthesis of modal control laws in active structural vibration control. Journal of Vibration and Control, 19(2), 163-182. DOI: https://doi.org/10.1177/1077546311430246
Cordelina, G., & Pavanelo, E. (2024). Uma possibilidade de programação no GeoGebra: primeiros passos. Revista do Instituto GeoGebra de São Paulo, 13(3), 023-041. DOI: https://doi.org/10.23925/2237-9657.2024.v13i3p085-103
Gharib, M., Omran, A., & El-Bayoumi, G. (2013). Optimal vibration control for structural-acoustic coupling system. Journal of Vibration and Control, 19(1), 14-29. DOI: https://doi.org/10.1177/1077546311430717
Hiramoto, K., & Grigoriadis, K. M. (2016). Active/semi-active hybrid control for motion and vibration control of mechanical and structural systems. Journal of Vibration and Control, 22(11), 2704-2718. DOI: https://doi.org/10.1177/107754631
Housner, G., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., & Yao, J. T. (1997). Structural control: past, present, and future. Journal of engineering mechanics, 123(9), 897-971. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
Khiavi, A. M., Mirzaei, M., & Hajimohammadi, S. (2014). A new optimal control law for the semi-active suspension system considering the nonlinear magneto-rheological damper model. Journal of Vibration and Control, 20(14), 2221-2233. DOI: https://doi.org/10.1177/1077546313478292
Lundberg, T. (2013). Analysis of simplified dynamic truck models for parameter evaluation.
N. Jazar, R., & Marzbani, H. (2023). 1/8 Vehicle Model. In Vehicle Vibrations: Linear and Nonlinear Analysis, Optimization, and Design (pp. 275-312). Cham: Springer International Publishing.
Pereira, E. (2021). Experiência de baixo custo para determinar a forma da superfície de um líquido em rotação usando o smartphone. Revista Brasileira de Ensino de Física, 43, e20210168. DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0168
Pereira, E. (2025). https://www.geogebra.org/classic/ebmsnyqt
Pereira, E., & Sandmann, A. (2024). Caos determinístico do pêndulo elástico: um estudo usando o GeoGebra. Revista do Instituto GeoGebra Internacional de São Paulo, 13(2), 062-081. DOI: https://doi.org/10.23925/2237-9657.2024.v13i2p062-081
Quintana, G., & Ciurana, J. (2011). Chatter in machining processes: A review. International Journal of Machine Tools and Manufacture, 51(5), 363-376. DOI: https://doi.org/10.1016/j.ijmachtools.2011.01.001
Rao, S. S. (1995). Mechanical Vibrations, Addison-Wessley. Reading, MA, 43-46.
Saaed, T. E., Nikolakopoulos, G., Jonasson, J. E., & Hedlund, H. (2015). A state-of-the-art review of structural control systems. Journal of Vibration and Control, 21(5), 919-937. DOI: https://doi.org/10.1177/1077546313478294
Santos, M. A., & Pansonato, C. C. (2024). A Geometria Esférica e o GeoGebra: abordagem trigonométrica para solucionar problemas de navegação no globo terrestre. Revista do Instituto GeoGebra Internacional de São Paulo, 13(3), 123-140. DOI: https://doi.org/10.23925/2237-9657.2024.v13i3p123-140
Soong, T. T., & Spencer Jr, B. F. (2002). Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering structures, 24(3), 243-259. DOI: https://doi.org/10.1016/S0141-0296(01)00092-X
Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy dissipation systems for seismic applications: current practice and recent developments. Journal of structural engineering, 134(1), 3-21. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3)
Tusset, A. M., Balthazar, J. M., & Felix, J. L. P. (2013). On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. Journal of Vibration and Control, 19(6), 803-813. DOI: https://doi.org/10.1177/1077546311435518
Wang, C. M., Yan, N., & Balendra, T. (1999). Control on dynamic structural response using active-passive composite-tuned mass dampers. Journal of Vibration and Control, 5(3), 475-489. DOI: https://doi.org/10.1177/107754639900500308
Webster, A., & Semke, W. (2004). Frequency-dependent viscoelastic structural elements for passive broad-band vibration control. Journal of Vibration and Control, 10(6), 881-895. DOI: https://doi.org/10.1177/1077546304041150
Yao, J. T. (1972). Concept of structural control. Journal of the Structural Division, 98(7), 1567-1574. DOI: https://doi.org/10.1061/JSDEAG.0003280
Younespour, A., & Ghaffarzadeh, H. (2015). Structural active vibration control using active mass damper by block pulse functions. Journal of Vibration and Control, 21(14), 2787-2795. DOI: https://doi.org/10.1177/1077546313519285
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of the GeoGebra International Institute of São Paulo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Submission, processing, and publication of articles sent to the journal and registration of the DOI at Crossref is free of charge.
Authors retain their copyright and grant the journal the right of first publication of their article, which is simultaneously licensed under a Creative Commons - Attribution 4.0 International license CC BY that allows others to share the article by acknowledging its authorship and initial publication by the journal.
The GeoGebra journal encourages its authors to register their work with information and communication management systems aimed at researchers, such as Academia.edu, Mendeley, ResearchGate, etc.
10.23925