Interactive Simulation with GeoGebra for Damped Systems with Base Excitation

Authors

  • Eliane Pereira unifesspa

DOI:

https://doi.org/10.23925/2237-9657.2024.v14i2p009-030

Keywords:

vibration, resonance, interactive simulation

Abstract

This work addresses the modeling, analysis, and simulation of a damped system with base excitation, using the Lagrangian formalism to derive the equations of motion. The simulation was developed in GeoGebra and allowed for the visualization of the system's behavior. The results indicate that when the damping factor ξ is less than 1, resonance occurs as the excitation frequency approaches the natural frequency of the system, resulting in significant amplifications of the vibrational response. For ξ ≥ 1, the resonant behavior is eliminated, highlighting the role of damping in dissipating energy and controlling the dynamic response of the system. In addition to the quantitative analysis, the interactive approach proved to be an effective tool for understanding phenomena such as resonance and displacement transmissibility. The simulation allowed for the visualization of the transition between the transient and steady-state regimes, highlighting the influence of damping on the dissipation of initial conditions.

References

Abdel-Rohman, M., & John, M. J. (2006). Control of wind-induced nonlinear oscillations in suspension bridges using multiple semi-active tuned mass dampers. Journal of Vibration and Control, 12(9), 1011-1046. DOI: https://doi.org/10.1177/1077546306069035

Alves, F. R. V. (2024). História da Matemática e Tecnologia: visualização de sequências recorrentes, algumas propriedades e a noção de Tabuleiro 2D/3D. Revista do Instituto GeoGebra Internacional de São Paulo, 13(3), 045-064. DOI: https://doi.org/10.23925/2237-9657.2024.v13i3p045-064

Braghin, F., Cinquemani, S., & Resta, F. (2013). A new approach to the synthesis of modal control laws in active structural vibration control. Journal of Vibration and Control, 19(2), 163-182. DOI: https://doi.org/10.1177/1077546311430246

Cordelina, G., & Pavanelo, E. (2024). Uma possibilidade de programação no GeoGebra: primeiros passos. Revista do Instituto GeoGebra de São Paulo, 13(3), 023-041. DOI: https://doi.org/10.23925/2237-9657.2024.v13i3p085-103

Gharib, M., Omran, A., & El-Bayoumi, G. (2013). Optimal vibration control for structural-acoustic coupling system. Journal of Vibration and Control, 19(1), 14-29. DOI: https://doi.org/10.1177/1077546311430717

Hiramoto, K., & Grigoriadis, K. M. (2016). Active/semi-active hybrid control for motion and vibration control of mechanical and structural systems. Journal of Vibration and Control, 22(11), 2704-2718. DOI: https://doi.org/10.1177/107754631

Housner, G., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., & Yao, J. T. (1997). Structural control: past, present, and future. Journal of engineering mechanics, 123(9), 897-971. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)

Khiavi, A. M., Mirzaei, M., & Hajimohammadi, S. (2014). A new optimal control law for the semi-active suspension system considering the nonlinear magneto-rheological damper model. Journal of Vibration and Control, 20(14), 2221-2233. DOI: https://doi.org/10.1177/1077546313478292

Lundberg, T. (2013). Analysis of simplified dynamic truck models for parameter evaluation.

N. Jazar, R., & Marzbani, H. (2023). 1/8 Vehicle Model. In Vehicle Vibrations: Linear and Nonlinear Analysis, Optimization, and Design (pp. 275-312). Cham: Springer International Publishing.

Pereira, E. (2021). Experiência de baixo custo para determinar a forma da superfície de um líquido em rotação usando o smartphone. Revista Brasileira de Ensino de Física, 43, e20210168. DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0168

Pereira, E. (2025). https://www.geogebra.org/classic/ebmsnyqt

Pereira, E., & Sandmann, A. (2024). Caos determinístico do pêndulo elástico: um estudo usando o GeoGebra. Revista do Instituto GeoGebra Internacional de São Paulo, 13(2), 062-081. DOI: https://doi.org/10.23925/2237-9657.2024.v13i2p062-081

Quintana, G., & Ciurana, J. (2011). Chatter in machining processes: A review. International Journal of Machine Tools and Manufacture, 51(5), 363-376. DOI: https://doi.org/10.1016/j.ijmachtools.2011.01.001

Rao, S. S. (1995). Mechanical Vibrations, Addison-Wessley. Reading, MA, 43-46.

Saaed, T. E., Nikolakopoulos, G., Jonasson, J. E., & Hedlund, H. (2015). A state-of-the-art review of structural control systems. Journal of Vibration and Control, 21(5), 919-937. DOI: https://doi.org/10.1177/1077546313478294

Santos, M. A., & Pansonato, C. C. (2024). A Geometria Esférica e o GeoGebra: abordagem trigonométrica para solucionar problemas de navegação no globo terrestre. Revista do Instituto GeoGebra Internacional de São Paulo, 13(3), 123-140. DOI: https://doi.org/10.23925/2237-9657.2024.v13i3p123-140

Soong, T. T., & Spencer Jr, B. F. (2002). Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering structures, 24(3), 243-259. DOI: https://doi.org/10.1016/S0141-0296(01)00092-X

Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy dissipation systems for seismic applications: current practice and recent developments. Journal of structural engineering, 134(1), 3-21. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3)

Tusset, A. M., Balthazar, J. M., & Felix, J. L. P. (2013). On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. Journal of Vibration and Control, 19(6), 803-813. DOI: https://doi.org/10.1177/1077546311435518

Wang, C. M., Yan, N., & Balendra, T. (1999). Control on dynamic structural response using active-passive composite-tuned mass dampers. Journal of Vibration and Control, 5(3), 475-489. DOI: https://doi.org/10.1177/107754639900500308

Webster, A., & Semke, W. (2004). Frequency-dependent viscoelastic structural elements for passive broad-band vibration control. Journal of Vibration and Control, 10(6), 881-895. DOI: https://doi.org/10.1177/1077546304041150

Yao, J. T. (1972). Concept of structural control. Journal of the Structural Division, 98(7), 1567-1574. DOI: https://doi.org/10.1061/JSDEAG.0003280

Younespour, A., & Ghaffarzadeh, H. (2015). Structural active vibration control using active mass damper by block pulse functions. Journal of Vibration and Control, 21(14), 2787-2795. DOI: https://doi.org/10.1177/1077546313519285

Published

2025-12-02

How to Cite

Pereira, E. (2025). Interactive Simulation with GeoGebra for Damped Systems with Base Excitation. Journal of the GeoGebra International Institute of São Paulo, 14(2), 009–030. https://doi.org/10.23925/2237-9657.2024.v14i2p009-030

Issue

Section

Artigos