Controle, prova e demonstração

Três regimes de validação

Autores

DOI:

https://doi.org/10.23925/1983-3156.2022v24i1p816-871

Palavras-chave:

Controle, Prova, Demonstração, Modelo ck¢

Resumo

Raciocinar é uma das seis competências da base comum da matemática do 4º ciclo (anos 7, 8 e 9 do currículo obrigatório na França). Inclui provar, argumentar, demonstrar, e afirma a centralidade da demonstração. As avaliações do programa reconhecem a dificuldade desse ensino. O texto a seguir questiona os avanços na pesquisa sobre a aprendizagem e o ensino de demonstração e sua capacidade de esclarecer a implementação dos programas atuais. Ele volta ao vocabulário, insistindo em particular nos diferentes regimes de validação da atividade do aluno. Em seguida, aborda essas questões na problemática da validação no sentido da teoria das situações didáticas. Os temas principais são a articulação entre prova e conhecimento, evocando brevemente o modelo ck¢, e a relação entre prova e argumentação.

Metrics

Carregando Métricas ...

Biografia do Autor

Nicolas Balacheff, Directeur de recherche CNRS émérite : Equipe MeTAH, Modèles et Technologies pour l'Apprentissage Humain Laboratoire d’informatique de Grenoble Univ. Grenoble Alpes, CNRS, Grenoble INP

Nicolas Balacheff tem doutorado em didática da matemática (Grenoble 1, 1988) e é diretor de pesquisa do CNRS. Após uma formação em matemática pura e depois em informática teórica, ele defendeu uma tese de pós-graduação em informática em 1978 (uso de gráficos para modelagem e raciocínio de estudo) e depois uma tese de estado em didática da matemática em 1988 (Aprendizagem de prova em matemática). Desde 1988, ele tem dedicado suas atividades de pesquisa a questões na encruzilhada da didática da matemática e da informática. Em 1995 ele criou a equipe Computer Environments for Human Learning no laboratório Leibniz em Grenoble, França, e é dentro desta estrutura que ele realiza seu trabalho em EIAH com uma ênfase particular nos aspectos epistemológicos e na modelagem de aprendizes. Atualmente ele é membro da equipe de Modelos e Tecnologias para Aprendizagem Humana (MeTAH) no Laboratório de Informática Grenoble (LIG).

Saddo Ag Almouloud, PUC-SP

Doutorado em Mathematiques et Applications - Université de Rennes 1 em 1992 - frança. Assistente doutor - pontifícia universidade católica de São Paulo, e assistente doutor da fundação Santo André. Consultor ad hoc da fundação de amparo a pesquisa do estado de são Paulo, da capes, bolsista pesquisador de CNPQ, foi coordenador do programa de estudos pós-graduados em educação matemática da PUC-SP de 2007 à 2009 e de 01/08/2013 a 31/07/2017. Atualmente é vice coordenador do referido programa. Foi coordenador do curso de especialização em educação matemática da PUC-SP de 2006 a 2017. Publicou mais de 50 artigos em periódicos especializados e mais de 83 trabalhos em anais de eventos. Possui 5 capítulos de livros e 12 livros publicados. Possui 1 software e mais de 62 itens de produção técnica. Participou de vários eventos no exterior e mais de 112 no brasil. Orientou mais 77 dissertações de mestrado e teses de doutorado na área de educação matemática entre 1996 e 2016. Participou de mais de 200 bancas de defesa de dissertações e doutorados. Coordenou mais de 5 projetos de pesquisa. Atualmente coordena 2 projetos de pesquisa. Atua na área de educação, com ênfase em educação matemática. É avaliador do prêmio victor civita desde 2013. Em suas atividades profissionais interagiu com mais 70 colaboradores em coautorias de trabalhos científicos. Em seu currículo lattes os termos mais frequentes na contextualização da produção científica, tecnológica e artístico-cultural são: ensino-aprendizagem, geometria, educação matemática, matemática, demonstração, ensino básico, formação de professores, geometria dinâmica, TIC.

Méricles Tadeu Moretti, Universidade Federal de Santa Catarina

Doutorado em Didática da Matemática

Referências

Arsac, G. (1987). L’origine de la démonstration : Essai d’épistémologie didactique. Recherches en didactique des mathématiques, 8(3), 48.

Arsac, G. (2013). Cauchy, Abel, Seidel, Stokes et la convergence uniforme : De la difficulté historique du raisonnement sur les limites. Paris : Hermann.

Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18(2), 147–176. https://doi.org/10.1007/BF00314724

Balacheff, N. (1988). Une étude des processus de preuve en mathématique chez des élèves de collège (Doctorat ès-sciences). Université Joseph Fourier - Grenoble 1, Grenoble.

Balacheff, N. (1990). Beyond a psychological approach of the psychology of mathematics education. For The Learning of Mathematics, 10(3), 2–8.

Balacheff, N. (1991). Benefits and limits of social interaction: The case of mathematical proof. In A. J. Bishop, S. Mellin-Olsen, & J. van Dormolen (Eds.), Mathematical Knowledge: Its Growth Through Teaching (pp. 175–192). Kluwer Academic Publishers.

Balacheff, N. (1995). Conception, propriété du système sujet/milieu. In R. Noirfalise & M.-J. Perrin-Glorian (Eds.), Actes de la VII° Ecole d’été de didactique des mathématiques (pp. 215–229). Clermont-Ferrand: IREM de Clermont-Ferrand.

Balacheff, N. (1999). L’argumentation est-elle un obstacle? Invitation à un débat... [Newsletter]. Retrieved 28 September 2019, from La lettre de la preuve website: http://www.lettredelapreuve.org/OldPreuve/Newsletter/990506Theme/990506ThemeFR.html

Balacheff, N. (2010). Bridging knowing and proving in mathematics An essay from a didactical perspective. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and Proof in Mathematics (pp. 115–135). Springer Berlin Heidelberg.

Balacheff, N. (2017). CK¢, a model to understand learners’ understanding – Discussing the case of functions. El Calculo y Su Ensenanza, IX (Jul-Dic), 1–23.

Balacheff, N., & Boy de la Tour, T. (2019). Proof Technology and Learning in Mathematics: Common Issues and Perspectives. In G. Hanna, D. Reid, & M. de Villiers (Eds.), Proof Technology in Mathematics Research and Teaching. Berlin: Springer.

Balacheff, N., & Gaudin, N. (2010). Modeling students’ conceptions: The case of function. In F. Hitt, D. Holton, &

P. Thompson (Eds.), CBMS Issues in Mathematics Education (Vol. 16, pp. 207–234). https://doi.org/10.1090/cbmath/016/08

Balacheff, N., & Margolinas, C. (2005). CK¢ Modèle de connaissances pour le calcul de situations didactiques. In

A. Mercier & C. Margolinas (Eds.), Balises pour la didactique des mathématiques (pp. 1 – 32). Ball, D. L. (1993). With an Eye on the Mathematical Horizon: Dilemmas of Teaching Elementary School

Mathematics. The Elementary School Journal, 93(4), 373–397. https://doi.org/10.1086/461730

Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In M. M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 179–209). Belo Horizonte, Brazil: PME.

Brousseau, G. (1998). Théorie des situations didactiques (Didactique des mathématiques 1970-1990). Grenoble: La Pensée Sauvage.

Cauchy, A. (1821). Analyse algébrique ([Reprod. En fac-sim.]). Retrieved from https://gallica.bnf.fr/ark:/12148/bpt6k29058v

Cauchy, A. (1853). Note sur les séries convergentes don tles divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. Comptes rendus de l’Académie des sciences, XXXVI(11), 454–457.

Delarivière, S., Frans, J., & Van Kerkhove, B. (2017). Mathematical Explanation: A Contextual Approach. Journal of Indian Council of Philosophical Research, 34(2), 309–329. https://doi.org/10.1007/s40961-016- 0086-2

Douady, R. (1992). Des apports de la didactique des mathématiques à l’enseignement. Repères IREM, 6, 132– 158.

Duval, R. (1991). Structure du raisonnement deductif et apprentissage de la demonstration. Educational Studies in Mathematics, 22(3), 233–261. https://doi.org/10.1007/BF00368340

Duval, R. (1992). Argumenter, prouver, expliquer: Continuité ou rupture cognitive ? Petit x, (31), 37–61.

Duval, R. (1998). Écriture et compréhension: Pourquoi faire écrire des textes de démonstration par les élèves ?

Produire et lire des textes de démonstration, S4, 79–98. Retrieved from http://www.numdam.org/article/PSMIR_1998 _S4_79_0.pdf

EDUSCOL. (2009). Raisonnement et démonstration. Retrieved from http://cache.media.eduscol.education.fr/file/Mathematiques/50/0/doc_acc_clg_raisonnementetdem onstration_223500.pdf

EDUSCOL. (2016). Raisonner [Institutionnel]. Retrieved 30 September 2018, from Éduscol website: http://cache.media.eduscol.education.fr/file/Competences_travaillees/83/6/RA16_C4_MATH_raisonn er_547836.pdf

Équipe académique Mathématiques. (2003). Initiation au raisonnement. Retrieved from http://mathematiques.ac- bordeaux.fr/pedaclg/dosped/raisonnement/brochure_init_raison/brochure_intro.htm

Fishbein, E. (1982). Intuition and proof. For The Learning of Mathematics, 3(2), 9–18.

Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulties of proof. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 345–352). Retrieved from http://www.mat.ufrgs.br/~portosil/garuti.html

Gaudin, N. (2005). Place de la validation dans la conceptualisation, le cas du concept de fonction (PhD Thesis). Université Joseph Fourier - Grenoble 1, Grenoble, France.

Georget, J.-P. (2009). Activités de recherche et de preuve entre pairs à l’école élémentaire : Perspectives ouvertes par les communautés de pratique d’enseignants (Didactique des mathématiques, Paris-Diderot). Retrieved from https://tel.archives-ouvertes.fr/tel-00426603

Granger, G.-G. (1981). Philosophie et mathématique leibniziennes. Revue de Métaphysique et de Morale, 86(1), 1–37. Retrieved from JSTOR.

Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6–13. https://doi.org/10.1007/BF01809605

Hanna, G. (1995). Challenges to the importance of proof. For the Learning of Mathematics, 15(3), 42–49. Hanna, G. (2017). Connecting two different views of mathematical explanation. Enabling Mathematical Cultures. Presented at the Enabling Mathematical Cultures, Mathematical Institute, University of Oxford. Retrieved from https://enablingmaths.wordpress.com/abstracts/

Hanna, G. (2018). Reflections on Proof as Explanation (draft). In A. J. Stylianides & G. Harel (Eds.), Advances in Mathematics Education Research on Proof and Proving: An International Perspective (pp. 3–18). https://doi.org/10.1007/978-3-319-70996-3_1

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. Schoenfeld, J. Kaput, E. Dubinsky, & T. Dick (Eds.), CBMS Issues in Mathematics Education (Vol. 7, pp. 234–283). https://doi.org/10.1090/cbmath/007/07

Keskessa, B. (1994). Preuve et plans de signification : Une hypothèse. Recherches En Didactique Des Mathématiques, 14(3), 357–391.

Knipping, C. (2003). Processus de preuve dans la pratique de l’enseignement – analyses comparatives des classes allemandes et françaises en 4èmeIntroduction. Bulletin de l’APMEP, 10.

Legrand, M. (1990). Rationalité et démonstration mathématiques, le rapport de la classe à une communauté scientifique. Recherches En Didactique Des Mathématiques, 9(3), 365–406.

Legrand, M., Lecorre, T., Leroux, L., & Parreau, A. (2011). Le principe du ‘débat scientifique’ dans un enseignement. Retrieved from http://irem.univ-grenoble-alpes.fr/spip/IMG/pdf/principedebac949.pdf

Maher, C. A., & Martino, A. M. (1996a). The Development of the Idea of Mathematical Proof: A 5-Year Case Study. Journal for Research in Mathematics Education, 27(2), 194. https://doi.org/10.2307/749600

Maher, C. A., & Martino, A. M. (1996b). Yound children invent methods of proof: The gang of four. In L. P. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.), Theories of mathematical learning (pp. 431– 445). Retrieved from https://www.learner.org/workshops/pupmath/support/mahermartino96.pdf

Mantes, M., & Arsac, G. (2007). Les pratiques du problème ouvert. CANOPE -CRDP Lyon.

Margolinas, C. (1993). De l’importance du vrai et du faux dans la classe de mathématiques. Grenoble: La Pensée Sauvage.

Mariotti, M. A., Bussi, M. G. B., Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: From history and epistemology to cognition. In E. Pehkonen (Ed.), Proceedings of the 21st PME Conference (Vol. 1, pp. 180–195). Helsinki, Finland: University of Helsinki.

MENESR. (2015a). Cycle 1. Bulletin Officiel de l’éducation Nationale, Spécial(2), 21.

MENESR. (2015b). Programme Mathématiques cycle 3. Retrieved from http://www.education.gouv.fr/pid285/bulletin_officiel.html?cid_bo=94708

MENESR. (2015c). Programme Mathématiques cycle 4. Retrieved from http://www.education.gouv.fr/pid285/bulletin_officiel.html?cid_bo=94717

MENESR. (2018a). Cycle 2. Bulletin Officiel de l’éducation Nationale, (30 (26-07-2018)), 30.

MENESR. (2018b). Cycle 3. Bulletin Officiel de l’éducation Nationale, (30 (26-07-2018)), 35.

Miyakawa, T. (2016). Comparative analysis on the nature of proof to be taught in geometry: The cases of French and Japanese lower secondary schools. Educational Studies in Mathematics, 92(2), 37–54. https://doi.org/10.1007/s10649-016-9711-x

Pedemonte, B. (2005). Quelques outils pour l’analyse du rapport enrte argumentation et démonstration. Recherches en Didactique des Mathématiques, 25(3), 313–347.

Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23–41. https://doi.org/10.1007/s10649-006-9057-x

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36. https://doi.org/10.1007/BF00302715

Stylianides, A. J. (2007). Proof and Proving in School Mathematics. Journal for Research in Mathematics, 38(3), 289–321.

Tall, D. (1998). The Cognitive Development of Proof: Is Mathematical Proof For All or For Some? In Z. Usiskin (Ed.), Developments in School Mathematics Education Around the World (pp. 117–136). Retrieved from https://pdfs.semanticscholar.org/d850/5fa1c58102b6a8e1ba3618f99cf3824ebe30.pdf

Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(2/3), 133–170.

Villani, C., & Torossian, C. (2018). 21 mesures pour l’enseignement des mathématiques (p. 96) [Rapport public]. Retrieved from Ministère de l’éducation nationale website: https://www.ladocumentationfrancaise.fr/rapports-publics/184000086/

Downloads

Publicado

2022-04-22

Edição

Seção

Tradução de artigo ou capítulo de livro