Between intuition and formalization of calculus: applications of the derivative illustrated in comics
DOI:
https://doi.org/10.23925/1983-3156.2024v26i3p422-441Keywords:
Teaching calculus, Comic, Epistemological reference model, Intuition, FormalizationAbstract
In this article, the results of a didactic experiment are presented whose objective was to analyze the potential of Comics in promoting learning in Higher Education, especially in the Differential Calculus I component, during the remote period resulting from the COVID health emergency -19. The study was based on notions of intuition and formalization, in addition to assumptions from the Anthropological Theory of Didactics, particularly mathematical praxeology and praxeological analysis. A praxeological analysis of the comics produced was carried out, identifying the predominant epistemological model in this experimentation. The application of derivative concepts to problems related to real situations resulted in an improvement in the student’s relationship with knowledge, contributing to the construction of meaning in learning. Aspects inherent to the process that occurs between intuition and the formalization of a concept were highlighted. A paradigm shift was observed in the teaching of Calculus by focusing on the proposition of creative situations. The implications of this research for the training of Higher Education teachers are also highlighted.
Metrics
References
Abreu, O. H. D., & Silva, F. D. (2011). Uma discussão sobre o papel das definições formais no ensino e aprendizagem de limites e continuidade em Cálculo I. Educação Matemática Pesquisa, 13(3), 439-459.
Alves, F. R. V. (2011). Aplicações da sequência Fedathi na promoção do raciocínio intuitivo no Cálculo a várias variáveis [Doctoral thesis, Universidade Federal do Ceará]. Repository of UFC. https://repositorio.ufc.br/ handle/riufc/ 3166
Alves, F. R. V. (2016). Categorias intuitivas para o ensino do Cálculo: Descrição e implicações para o ensino. Revista Brasileira de Ensino de Ciência e Tecnologia, 9(3), 1-21. https://periodicos.utfpr.edu.br/rbect/article/view/1538/pdf
Brousseau, G. (2008). Introdução ao estudo das situações didáticas: Conceitos e métodos de ensino. Ática.
Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des mathématiques: L’approche anthropologique. In R. Noirfalise (Éd.), Actes de l’Université d’été Analyse des pratiques enseignantes et didactique des mathématiques, La Rochelle, 4-11 juillet 1998 (pp. 91-120). IREM de Clermont-Ferrand. http://yves.chevallard.free.fr/spip/spip/ article.php3?id_article=27.
Chevallard, Y. (1999). L’analyse des pratiques enseignantes en Théorie Antropologique du Didactique. Recherches en Didactique des Mathématiques, 19(2), 221-226. http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Analyse_des_pratiques_enseignantes.pdf.
Correia, V. A. (2010). Intuição matemática em Jean Cavaillès. In Estudios de Lógica, Lenguaje y Epistemología (pp. 109-118). Universidad de Sevilla.
Felix, G. (2016). Produção de histórias em quadrinhos para a resolução de problemas matemáticos: O relato de uma experiência na iniciação à docência. Annals of Encontro Nacional de Educação Matemática. https://repositorio.utfpr.edu.br/jspui/bitstream/1/ 4034/1/LD_PPGMAT_M_Fonteque%2C%20Viviane%20Bergamini_2019.pdf
Flemming, D., & Gonçalves, M. (2010). Cálculo A (6th ed.). Pearson Universidades.
Guidorizzi, H. L. (2013). Um curso de Cálculo (5th ed., Vol. 1). LTC.
Javaroni, S. L. (2005). A tensão entre rigor e intuição no ensino de Cálculo e análise: A visão de professores-pesquisadores e autores de livros didáticos [Review of Doctoral thesis, by Reis, F. da S.]. Bolema – Boletim de Educação Matemática, 18(24), 125-132.
Marinho, E. E. S. (2019). Intuição matemática [Master’s thesis, Universidade Estadual da Paraíba]. Repository of UEPB. https://sca.profmat-sbm.org.br/profmat_tcc.php?id1= 4968&id2=170190115
Matheron, Y. (2000). Analyser les praxéologies: Quelques exemples d’organisations mathématiques. lREM d’ Aix-Marseille, 54, 51-78.
Meneghetti, R. (2009). O Intuitivo e o Lógico no Conhecimento Matemático: Análise de uma proposta pedagógica em relação a abordagens filosóficas atuais e ao contexto educacional da matemática. Bolema – Boletim de Educação Matemática, 22 (22), 161-188.
Oliveira, L. (2010). História em quadrinhos e matemática, essa conexão é possível? Annals of Encontro Nacional de Educação Matemática. https://conferencia.ciaem-redumate.org/ index.php/xvciaem/xv/paper/viewFile/266/361
Pereira, V. (2009). Cálculo no ensino médio: Uma proposta para o problema da Variabilidade. [Master’s thesis, Universidade Federal do Rio de Janeiro]. Repository of UFRJ. https://pemat.im.ufrj.br/images/Documentos/Disserta%C3%A7%C3%B5es/2009/MSc_13_Vinicius_Mendes_Couto_Pereira.pdf
Pinto, G. (2008). Compreensão gráfica da derivada de uma função real em um curso de Cálculo semipresencial. [Master’s thesis, Universidade Federal do Rio de Janeiro]. Repository of UFRJ. https://pemat.im.ufrj.br/index.php/en/producao-cientifica/dissertacoes/2008/ 71-compreensao-grafica-da-derivada-de-uma-funcao-real-em-um-curso-de-calculo-semi-presencial
Reis, F. da S. (2001). A tensão entre rigor e intuição no ensino de cálculo e análise: A visão de professores-pesquisadores e autores de livros didáticos [Doctoral thesis, Universidade Estadual de Campinas]. Repository of Unicamp. https://repositorio.unicamp.br/Acervo/ Detalhe/206743
Sá, C. C., & Rocha, J. (2012). Treze viagens pelo mundo da matemática (2nd ed.). SBM.
Silva, B. A. (2011). Diferentes dimensões do ensino e aprendizagem do Cálculo. Educação Matemática Pesquisa, 13(3), 393-413.
Snapper, E. (1984). As três crises da Matemática: O logicismo, o intuicionismo e o formalismo. Humanidades, 11(8), 85-93.
Trevisan, A. L., & Tavares, M. (2017). Integral antes de derivada? Derivada antes de integral? Limite, no final? Uma proposta para organizar um curso de Cálculo. Educação Matemática Pesquisa, 19(3), 353-373.
Vergueiro, W., & Rama, A. (2004). Como usar as histórias em quadrinhos na sala de aula. Contexto.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).