Entre l’intuition et la formalisation du calcul : applications de la dérivée illustrées en bandes dessinées
DOI :
https://doi.org/10.23925/1983-3156.2024v26i3p422-441Mots-clés :
Enseignement du calcul, Bande dessinée, Modèle épistémologique de référence , Intuition, FormalisationRésumé
Cet article présente les résultats d'une expérience didactique dont l'objectif était d'analyser le potentiel des bandes dessinées pour favoriser l'apprentissage dans l'enseignement supérieur, en particulier en calcul différentiel I, pendant la période d'éloignement résultant de l'urgence sanitaire COVID-19. L'étude s'appuie sur les notions d'intuition et de formalisation, ainsi que sur les hypothèses de la théorie anthropologique de la didactique, en particulier la praxéologie mathématique et l'analyse praxéologique. Une analyse praxéologique des bandes dessinées produites a été réalisée, identifiant le modèle épistémologique prédominant dans cette expérience. L'application des concepts dérivés à des problèmes liés à des situations réelles a permis d'améliorer le rapport de l'élève à la connaissance, contribuant ainsi à la construction du sens dans l'apprentissage. Les aspects inhérents au processus qui se déroule entre l'intuition et la formalisation d'un concept ont été mis en évidence. Un changement de paradigme a été observé dans l'enseignement du calcul en se concentrant sur la proposition de situations créatives. Les implications de cette recherche pour la formation des enseignants de l'enseignement supérieur sont également soulignées.
Métriques
Références
Abreu, O. H. D., & Silva, F. D. (2011). Uma discussão sobre o papel das definições formais no ensino e aprendizagem de limites e continuidade em Cálculo I. Educação Matemática Pesquisa, 13(3), 439-459.
Alves, F. R. V. (2011). Aplicações da sequência Fedathi na promoção do raciocínio intuitivo no Cálculo a várias variáveis [Doctoral thesis, Universidade Federal do Ceará]. Repository of UFC. https://repositorio.ufc.br/ handle/riufc/ 3166
Alves, F. R. V. (2016). Categorias intuitivas para o ensino do Cálculo: Descrição e implicações para o ensino. Revista Brasileira de Ensino de Ciência e Tecnologia, 9(3), 1-21. https://periodicos.utfpr.edu.br/rbect/article/view/1538/pdf
Brousseau, G. (2008). Introdução ao estudo das situações didáticas: Conceitos e métodos de ensino. Ática.
Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des mathématiques: L’approche anthropologique. In R. Noirfalise (Éd.), Actes de l’Université d’été Analyse des pratiques enseignantes et didactique des mathématiques, La Rochelle, 4-11 juillet 1998 (pp. 91-120). IREM de Clermont-Ferrand. http://yves.chevallard.free.fr/spip/spip/ article.php3?id_article=27.
Chevallard, Y. (1999). L’analyse des pratiques enseignantes en Théorie Antropologique du Didactique. Recherches en Didactique des Mathématiques, 19(2), 221-226. http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Analyse_des_pratiques_enseignantes.pdf.
Correia, V. A. (2010). Intuição matemática em Jean Cavaillès. In Estudios de Lógica, Lenguaje y Epistemología (pp. 109-118). Universidad de Sevilla.
Felix, G. (2016). Produção de histórias em quadrinhos para a resolução de problemas matemáticos: O relato de uma experiência na iniciação à docência. Annals of Encontro Nacional de Educação Matemática. https://repositorio.utfpr.edu.br/jspui/bitstream/1/ 4034/1/LD_PPGMAT_M_Fonteque%2C%20Viviane%20Bergamini_2019.pdf
Flemming, D., & Gonçalves, M. (2010). Cálculo A (6th ed.). Pearson Universidades.
Guidorizzi, H. L. (2013). Um curso de Cálculo (5th ed., Vol. 1). LTC.
Javaroni, S. L. (2005). A tensão entre rigor e intuição no ensino de Cálculo e análise: A visão de professores-pesquisadores e autores de livros didáticos [Review of Doctoral thesis, by Reis, F. da S.]. Bolema – Boletim de Educação Matemática, 18(24), 125-132.
Marinho, E. E. S. (2019). Intuição matemática [Master’s thesis, Universidade Estadual da Paraíba]. Repository of UEPB. https://sca.profmat-sbm.org.br/profmat_tcc.php?id1= 4968&id2=170190115
Matheron, Y. (2000). Analyser les praxéologies: Quelques exemples d’organisations mathématiques. lREM d’ Aix-Marseille, 54, 51-78.
Meneghetti, R. (2009). O Intuitivo e o Lógico no Conhecimento Matemático: Análise de uma proposta pedagógica em relação a abordagens filosóficas atuais e ao contexto educacional da matemática. Bolema – Boletim de Educação Matemática, 22 (22), 161-188.
Oliveira, L. (2010). História em quadrinhos e matemática, essa conexão é possível? Annals of Encontro Nacional de Educação Matemática. https://conferencia.ciaem-redumate.org/ index.php/xvciaem/xv/paper/viewFile/266/361
Pereira, V. (2009). Cálculo no ensino médio: Uma proposta para o problema da Variabilidade. [Master’s thesis, Universidade Federal do Rio de Janeiro]. Repository of UFRJ. https://pemat.im.ufrj.br/images/Documentos/Disserta%C3%A7%C3%B5es/2009/MSc_13_Vinicius_Mendes_Couto_Pereira.pdf
Pinto, G. (2008). Compreensão gráfica da derivada de uma função real em um curso de Cálculo semipresencial. [Master’s thesis, Universidade Federal do Rio de Janeiro]. Repository of UFRJ. https://pemat.im.ufrj.br/index.php/en/producao-cientifica/dissertacoes/2008/ 71-compreensao-grafica-da-derivada-de-uma-funcao-real-em-um-curso-de-calculo-semi-presencial
Reis, F. da S. (2001). A tensão entre rigor e intuição no ensino de cálculo e análise: A visão de professores-pesquisadores e autores de livros didáticos [Doctoral thesis, Universidade Estadual de Campinas]. Repository of Unicamp. https://repositorio.unicamp.br/Acervo/ Detalhe/206743
Sá, C. C., & Rocha, J. (2012). Treze viagens pelo mundo da matemática (2nd ed.). SBM.
Silva, B. A. (2011). Diferentes dimensões do ensino e aprendizagem do Cálculo. Educação Matemática Pesquisa, 13(3), 393-413.
Snapper, E. (1984). As três crises da Matemática: O logicismo, o intuicionismo e o formalismo. Humanidades, 11(8), 85-93.
Trevisan, A. L., & Tavares, M. (2017). Integral antes de derivada? Derivada antes de integral? Limite, no final? Uma proposta para organizar um curso de Cálculo. Educação Matemática Pesquisa, 19(3), 353-373.
Vergueiro, W., & Rama, A. (2004). Como usar as histórias em quadrinhos na sala de aula. Contexto.
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence
Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).