Entre la intuición y la formalización del cálculo: aplicaciones de la derivada ilustradas en cómics

Autores/as

DOI:

https://doi.org/10.23925/1983-3156.2024v26i3p422-441

Palabras clave:

Enseñanza del cálculo, Cómic, Modelo epistemológica de referencia , Intuición, Formalización

Resumen

En este artículo se presentan los resultados de un experimento didáctico cuyo objetivo fue analizar el potencial de las historietas en la promoción del aprendizaje en la Educación Superior, especialmente en el componente de Cálculo Diferencial I, durante el período remoto derivado de la emergencia sanitaria COVID-19. El estudio se basó en nociones de intuición y formalización, además de supuestos de la Teoría Antropológica de la Didáctica, particularmente la praxeología matemática y el análisis praxeológico. Se realizó un análisis praxeológico de las historietas producidas, identificando el modelo epistemológico predominante en esta experimentación. La aplicación de conceptos derivados a problemas relacionados con situaciones reales resultó en una mejora en la relación del estudiante con el conocimiento, contribuyendo a la construcción de significado en el aprendizaje. Se destacaron aspectos inherentes al proceso que se da entre la intuición y la formalización de un concepto. Se observó un cambio de paradigma en la enseñanza del Cálculo al centrarse en la proposición de situaciones creativas. También se destacan las implicaciones de esta investigación para la formación de docentes de Educación Superior.

Métricas

Cargando métricas ...

Biografía del autor/a

Fabiana Santos, Universidade Federal do Oeste Bahia

Doutorado em Matemática

Fábio da Silva, Universidade Federal do Oeste Bahia

Doutorado em Matemática

Lauriclecio Lopes, Universidade Federal do Oeste Bahia

Mestrado em Matemática

Priscila Ramos, Universidade Federal do Oeste Bahia

Doutorado em Matemática Aplicada

Citas

Abreu, O. H. D., & Silva, F. D. (2011). Uma discussão sobre o papel das definições formais no ensino e aprendizagem de limites e continuidade em Cálculo I. Educação Matemática Pesquisa, 13(3), 439-459.

Alves, F. R. V. (2011). Aplicações da sequência Fedathi na promoção do raciocínio intuitivo no Cálculo a várias variáveis [Doctoral thesis, Universidade Federal do Ceará]. Repository of UFC. https://repositorio.ufc.br/ handle/riufc/ 3166

Alves, F. R. V. (2016). Categorias intuitivas para o ensino do Cálculo: Descrição e implicações para o ensino. Revista Brasileira de Ensino de Ciência e Tecnologia, 9(3), 1-21. https://periodicos.utfpr.edu.br/rbect/article/view/1538/pdf

Brousseau, G. (2008). Introdução ao estudo das situações didáticas: Conceitos e métodos de ensino. Ática.

Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des mathématiques: L’approche anthropologique. In R. Noirfalise (Éd.), Actes de l’Université d’été Analyse des pratiques enseignantes et didactique des mathématiques, La Rochelle, 4-11 juillet 1998 (pp. 91-120). IREM de Clermont-Ferrand. http://yves.chevallard.free.fr/spip/spip/ article.php3?id_article=27.

Chevallard, Y. (1999). L’analyse des pratiques enseignantes en Théorie Antropologique du Didactique. Recherches en Didactique des Mathématiques, 19(2), 221-226. http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Analyse_des_pratiques_enseignantes.pdf.

Correia, V. A. (2010). Intuição matemática em Jean Cavaillès. In Estudios de Lógica, Lenguaje y Epistemología (pp. 109-118). Universidad de Sevilla.

Felix, G. (2016). Produção de histórias em quadrinhos para a resolução de problemas matemáticos: O relato de uma experiência na iniciação à docência. Annals of Encontro Nacional de Educação Matemática. https://repositorio.utfpr.edu.br/jspui/bitstream/1/ 4034/1/LD_PPGMAT_M_Fonteque%2C%20Viviane%20Bergamini_2019.pdf

Flemming, D., & Gonçalves, M. (2010). Cálculo A (6th ed.). Pearson Universidades.

Guidorizzi, H. L. (2013). Um curso de Cálculo (5th ed., Vol. 1). LTC.

Javaroni, S. L. (2005). A tensão entre rigor e intuição no ensino de Cálculo e análise: A visão de professores-pesquisadores e autores de livros didáticos [Review of Doctoral thesis, by Reis, F. da S.]. Bolema – Boletim de Educação Matemática, 18(24), 125-132.

Marinho, E. E. S. (2019). Intuição matemática [Master’s thesis, Universidade Estadual da Paraíba]. Repository of UEPB. https://sca.profmat-sbm.org.br/profmat_tcc.php?id1= 4968&id2=170190115

Matheron, Y. (2000). Analyser les praxéologies: Quelques exemples d’organisations mathématiques. lREM d’ Aix-Marseille, 54, 51-78.

Meneghetti, R. (2009). O Intuitivo e o Lógico no Conhecimento Matemático: Análise de uma proposta pedagógica em relação a abordagens filosóficas atuais e ao contexto educacional da matemática. Bolema – Boletim de Educação Matemática, 22 (22), 161-188.

Oliveira, L. (2010). História em quadrinhos e matemática, essa conexão é possível? Annals of Encontro Nacional de Educação Matemática. https://conferencia.ciaem-redumate.org/ index.php/xvciaem/xv/paper/viewFile/266/361

Pereira, V. (2009). Cálculo no ensino médio: Uma proposta para o problema da Variabilidade. [Master’s thesis, Universidade Federal do Rio de Janeiro]. Repository of UFRJ. https://pemat.im.ufrj.br/images/Documentos/Disserta%C3%A7%C3%B5es/2009/MSc_13_Vinicius_Mendes_Couto_Pereira.pdf

Pinto, G. (2008). Compreensão gráfica da derivada de uma função real em um curso de Cálculo semipresencial. [Master’s thesis, Universidade Federal do Rio de Janeiro]. Repository of UFRJ. https://pemat.im.ufrj.br/index.php/en/producao-cientifica/dissertacoes/2008/ 71-compreensao-grafica-da-derivada-de-uma-funcao-real-em-um-curso-de-calculo-semi-presencial

Reis, F. da S. (2001). A tensão entre rigor e intuição no ensino de cálculo e análise: A visão de professores-pesquisadores e autores de livros didáticos [Doctoral thesis, Universidade Estadual de Campinas]. Repository of Unicamp. https://repositorio.unicamp.br/Acervo/ Detalhe/206743

Sá, C. C., & Rocha, J. (2012). Treze viagens pelo mundo da matemática (2nd ed.). SBM.

Silva, B. A. (2011). Diferentes dimensões do ensino e aprendizagem do Cálculo. Educação Matemática Pesquisa, 13(3), 393-413.

Snapper, E. (1984). As três crises da Matemática: O logicismo, o intuicionismo e o formalismo. Humanidades, 11(8), 85-93.

Trevisan, A. L., & Tavares, M. (2017). Integral antes de derivada? Derivada antes de integral? Limite, no final? Uma proposta para organizar um curso de Cálculo. Educação Matemática Pesquisa, 19(3), 353-373.

Vergueiro, W., & Rama, A. (2004). Como usar as histórias em quadrinhos na sala de aula. Contexto.

Descargas

Publicado

2024-11-03

Cómo citar

SANTOS, F.; DA SILVA, F.; LOPES, L.; RAMOS, P. . Entre la intuición y la formalización del cálculo: aplicaciones de la derivada ilustradas en cómics. Educação Matemática Pesquisa, São Paulo, v. 26, n. 3, p. 422–441, 2024. DOI: 10.23925/1983-3156.2024v26i3p422-441. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/68161. Acesso em: 21 nov. 2024.

Número

Sección

Modelo epistemológico de referencia (MRE) para la enseñanza del cálculo