Quando As Frações Não São Apenas Partes de Um Todo…!<br>When fractions are not just parts of a whole…

Autores/as

DOI:

https://doi.org/10.23925/1983-3156.2021v23i1p683-712

Palabras clave:

Números racionais, frações, significados de frações, aprendizagem, abordagem exploratória.

Resumen

Resumo

Este estudo tem como objetivo analisar os conhecimentos de alunos do 5.º ano relativos aos significados das frações antes e após uma experiência de ensino que segue uma abordagem exploratória com ênfase na resolução de problemas. Os participantes são alunos de uma turma do referido ano. Para a recolha de dados foram usados dois testes, inicial e final, complementados com a realização de entrevistas semiestruturadas individuais. Os dados indicam que, antes da experiência de ensino, os alunos tinham um conhecimento muito limitado dos significados das frações, nomeadamente como medida e como quociente. Demonstravam apenas algumas ideias associadas à relação parte-todo e ao operador, mas este último apenas ao nível procedimental. Após a experiência de ensino, estes alunos mostraram alguma flexibilidade com todos os significados, embora o significado de medida ainda constitua um desafio para um dos alunos participantes.

Palavras-chave: Números racionais, Frações, Significados de frações, Aprendizagem, Abordagem exploratória.

Abstract

This study aims to analyze grade 5 students’ knowledge regarding the meanings of fractions before and after a teaching experiment following an exploratory approach, with emphasis in problem solving. The participants are students from the same class. For data collection, two tests were used, pre-test and post-test, complemented with individual semi-structured interviews. The data indicate that, before the teaching experiment, the students had a very limited knowledge related to the meanings of fractions, in particular measure and quotient. They demonstrated only a few ideas associated with the part-whole relationship and operator, but this last meaning only at the procedural level. After the teaching experiment, these students showed some flexibility with all meanings of fractions, although the meaning of measure is still a challenge for one of them.

Keywords: Rational numbers, Fractions, Meaning of fractions, Learning, Exploratory approach.

Resumen

Este estudio tiene como objetivo analizar el conocimiento de los estudiantes de quinto grado sobre el significado de las fracciones antes y después de una experiencia de enseñanza que sigue un enfoque exploratorio con énfasis en la resolución de problemas. Los participantes son estudiantes de la misma clase. Para la recopilación de datos, se utilizaron dos pruebas iniciales y finales, complementadas con entrevistas semiestructuradas individuales. Los datos indican que, antes de la experiencia de enseñanza, los estudiantes tenían un conocimiento muy limitado de los significados de las fracciones, en particular de medida y cociente. Demostraron sólo unas pocas ideas asociadas con la relación parte-todo y el operador, pero esto último significado sólo a nivel de procedimiento. Después de la experiencia de enseñanza, estos estudiantes mostraron cierta flexibilidad con todos los significados, aunque el significado de la medida todavía plantea un desafío para uno de los estudiantes participantes.

Palabras clave: Números racionales, Fracciones, Significados, Aprendizaje, Enfoque exploratorio.

Métricas

Cargando métricas ...

Biografía del autor/a

Sofia Isabel Graça, Universidade de Lisboa - Instituto de Educação

Instituto de Educação

Didática da Matemática

Citas

Alkhateeb, M. (2019). Common errors in fractions and the thinking strategies that accompany them. International Journal of Instruction, 12(2), 339-416.

Barnett-Clarke, C., Fisher, W., Marks, R., & Ross, S. (2010). Developing essential understanding of rational numbers: Grades 3-5. Reston, VA: NCTM.

Behr, M., Lesh, R., Post, T., & Silver, E. (1983). Rational number concepts. In R. Lesh & M. Landau (Eds.). Acquisition of mathematics concepts and processes, (pp. 91-125). New York, NY: Academic Press.

Charalambous C., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understanding of fractions. Educational Studies in Mathematics, 64(3), 293-316.

Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp. 119-161). NY: Macmillan.

Hunt, J., Westenskow, A., & Moyer-Packenham, P. (2017). Variations of reasoning in equal sharing of children who experience low achievement in mathematics: Competence in context. Education Sciences, 7(1), 1-14.

Lamon, S. (1996). The development of unitizing: Its role in children’s partitioning strategies. Journal for Research in Mathematics Education, 27(2), 170–193.

Lamon, S. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (629-668). Greenwhich, CT: Information Age.

Lee, H., Dewolf, M., Bassok, M., & Holyoak, K. (2016). Conceptual and procedural distinctions between fractions and decimals: A cross-national comparison. Cognition, 147, 57-69.

Lewis, C., & Perry, R. (2014). Lesson study with mathematical resources: A sustainable model for locally-led teacher professional learning. Mathematics Teacher Education and Development, 16(1), 22-42.

Llinares, S., & Sánchez, M. V. (1997). Fracciones: La relacion parte-todo. Madrid: Sintesis.

Moseley, B. (2005). Students’ early mathematical representation knowledge: The effects of emphasizing single or multiple perspectives of the rational number domain in problem solving. Educational Studies in Mathematics, 60, 37-69.

Norton, A., Wilkins, J., & Xu, C. (2018). A progression of fraction schemes common to Chinese and U.S. students. Journal for Research in Mathematics Education, 49(2), 210-226.

Ponte, J. P., & Quaresma, M. (2016). Teachers’ professional practice conducting mathematical discussions. Educational Studies in Mathematics, 93(1), 51-66.

Post, T., Behr, M., & Lesh, R. (1986). Research-based observations about children’s learning of rational number concepts. Focus on Learning Problems in Mathematics, 8(1), 39-48.

Post, T., Cramer, K., Behr, M., Lesh, T., & Harel, G. (1993). Curriculum implications of research on the learning, teaching and assessing of rational number concepts. In T. Carpenter, E. Fennema & T. Romberg (Eds.), Rational numbers: An integration of research (pp. 327-358). Hillsdale, NJ: Lawrence Erlbaum.

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.

Stafylidou, S., & Vosniadou, S. (2004). The development of students’ understanding of the numerical value of fractions. Learning and Instruction, 14, 503-518.

Toluk, Z., & Middleton, J. (2001). The development of children’s understanding of the quotient: a teaching experiment. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th annual meeting of the International Group for the Psychology of Mathematics Education (pp. 265-272). Utrecht, The Netherlands: Hogrefe.

Publicado

2021-04-11

Cómo citar

GRAÇA, S. I.; DA PONTE, J. P.; GUERREIRO, A. Quando As Frações Não São Apenas Partes de Um Todo…!&lt;br&gt;When fractions are not just parts of a whole…. Educação Matemática Pesquisa, São Paulo, v. 23, n. 1, p. 683–712, 2021. DOI: 10.23925/1983-3156.2021v23i1p683-712. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/51571. Acesso em: 22 nov. 2024.