Discussion sur la définition de la limite d'une suite

Auteurs

DOI :

https://doi.org/10.23925/1983-3156.2024v26i3p515-533

Mots-clés :

Limite d’une suite, Définition formelle, Représentations, Enseignement supérieur

Résumé

Dans cet article, nous présentons une étude sur les difficultés dans le processus d'apprentissage de la définition de la limite d'une suite. Il s'agit d'une étude qualitative dont l'objectif est d'analyser les actions d'un sujet face à une situation impliquant cette définition. Pour ce faire, nous avons abordé les concepts impliqués dans le champ conceptuel de cette définition, ainsi que l'analyse d'une situation proposée. Les données ont été produites par le biais de productions écrites et orales, recueillies à partir des fiches de résolution des activités et des productions audio et vidéo réalisées pendant la session. Les analyses montrent qu'il est difficile de se détacher des représentations graphiques utilisées pour traiter des situations particulières, dans le cas de séquences convergentes, même lorsque le sujet est confronté à l'étude des éléments conceptuels impliqués dans la définition formelle.

Métriques

Chargements des métriques ...

Bibliographies de l'auteur

Sonia Maria Monteiro da Silva Burigato, UFMS

Educação Aberta e a Distância/ Licenciatura em Matemática

Claudemir Aniz, Universidade Federal de Mato Grosso do Sul

Doutorado em Matemática

Références

Bloch, I. (2017). L’enseignement de l’analyse: de la limite à la dérivée et au EDO, questions épistémologiques et didactiques. Dans Y. Matheron et al. (Dir.), Actes de la 18ème école d’été de didactique des mathématiques (p. 67-91). La Pensée Sauvage.

Burigato, S. M. M. S. (2019). Um Estudo sobre a Aprendizagem do Conceito de Limite de Função por Estudantes nos Contextos Brasil e França. 2019. [Tese de Doutorado em Educação Matemática] – Universidade Federal de Mato Grosso do Sul, Campo Grande.

Chevallard, Y. (1994). Les processus de transposition didactique et leur théorisation. In : La transposition didactique à l'épreuve, La Pensée Sauvage, Grenoble, p. 135-180.

Chevallard, Y. (1999). Analyse des pratiques enseignantes et didactique des mathematiques: L ́approche antropologique. In : Recherches en Didactique des Mathématiques, Vol 19, no 2, pp. 221-266.

Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced mathematical thinking (pp. 153–166). Dordrecht: Kluwer.

Coutinho, C. P. (2011). Metodologia da Investigação em Ciências Sociais e Humanas: Teoria e Prática. Grupo Almedina (Portugal).

Doumbia, C. O. (2020). Un modèle didactique de référence pour la construction des savoirs et l’actualisation des connaissances sur la notion de limite au Mali. 289f. [Tese de doutorado em Ensino, Filosofia e História das Ciências, Faculdade de Educação da Universidade Federal da Bahia]. https://repositorio.ufba.br/ri/bitstream/ri/31999/1/Tese%20completa%20com%20ficha%20catalografica%20Cheick%20Oumar%20Doumbia%202020.pdf

Fernandes, J. A. N. (2015). Ecologia do Saber: O Ensino de Limite em um Curso de Engenharia. [Tese de doutorado em Educação em Ciências e Matemática] Universidade Federal do Pará, Belém.

Job, P., Schneider, M. (2014). Empirical positivism, an epistemological obstacle in the learning of calculus. ZDM Mathematics Education 46, pp. 635–646. https://doi.org/10.1007/s11858-014-0604-0

Schneider, M., & Job, P. (2016). Ingénieries entre recherche et formation : Élèves-professeurs en mathématiques aux prises avec des ingénieries didactiques issues de la recherche. Un dispositif de formation à portée phénoménotechnique. Éducation et didactique, 2, 91-112.

Lima, E. L. (2013). Curso de Análise, volume 1, Funções de uma variável. Projeto Euclides, IMPA.

Vergnaud, G. (1990). La théorie de Champs Conceptuels. Recherches en Didactique de Mathématiques, v.10, n.2.3, (pp. 133-170). La Pensée Sauvage.

Vergnaud, G. (2016). La prise en compte de l'enseignant dans la théorie des champs conceptuels. Formation des enseignants et étude didactique de l'enseignant, 3-19.

Publiée

2024-11-03

Comment citer

MONTEIRO DA SILVA BURIGATO, S. M.; ANIZ, C.; MILENA RAMOS CARVALHO , L. Discussion sur la définition de la limite d’une suite. Educação Matemática Pesquisa, São Paulo, v. 26, n. 3, p. 515–533, 2024. DOI: 10.23925/1983-3156.2024v26i3p515-533. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/66336. Acesso em: 23 nov. 2024.

Numéro

Rubrique

Modèle de référence épistémologique (MRE) pour l'enseignement du calcul infinité