A discussion on the definition of the limit of a sequence

Authors

DOI:

https://doi.org/10.23925/1983-3156.2024v26i3p515-533

Keywords:

Limit of sequence, Formal definition, Representations, Higher education

Abstract

In this article we present a study on difficulties in the process of learning the definition of the limit of a sequence. It is a qualitative study whose aim was to analyze the actions of a subject when dealing with a situation involving this definition. To this end, we discussed the concepts involved in the conceptual field of this definition, together with the analysis of a proposed situation. The data was produced through written and oral production, collected from the activity resolution sheets and audio and video produced during the session. The analyses show the difficulty in disengaging from graphic representations used to deal with particular situations, in the case of sequences that converge, even when the subject is confronted with a study of the conceptual elements involved in the formal definition.

Metrics

Metrics Loading ...

Author Biographies

Sonia Maria Monteiro da Silva Burigato, UFMS

Educação Aberta e a Distância/ Licenciatura em Matemática

Claudemir Aniz, Universidade Federal de Mato Grosso do Sul

Doutorado em Matemática

References

Bloch, I. (2017). L’enseignement de l’analyse: de la limite à la dérivée et au EDO, questions épistémologiques et didactiques. Dans Y. Matheron et al. (Dir.), Actes de la 18ème école d’été de didactique des mathématiques (p. 67-91). La Pensée Sauvage.

Burigato, S. M. M. S. (2019). Um Estudo sobre a Aprendizagem do Conceito de Limite de Função por Estudantes nos Contextos Brasil e França. 2019. [Tese de Doutorado em Educação Matemática] – Universidade Federal de Mato Grosso do Sul, Campo Grande.

Chevallard, Y. (1994). Les processus de transposition didactique et leur théorisation. In : La transposition didactique à l'épreuve, La Pensée Sauvage, Grenoble, p. 135-180.

Chevallard, Y. (1999). Analyse des pratiques enseignantes et didactique des mathematiques: L ́approche antropologique. In : Recherches en Didactique des Mathématiques, Vol 19, no 2, pp. 221-266.

Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced mathematical thinking (pp. 153–166). Dordrecht: Kluwer.

Coutinho, C. P. (2011). Metodologia da Investigação em Ciências Sociais e Humanas: Teoria e Prática. Grupo Almedina (Portugal).

Doumbia, C. O. (2020). Un modèle didactique de référence pour la construction des savoirs et l’actualisation des connaissances sur la notion de limite au Mali. 289f. [Tese de doutorado em Ensino, Filosofia e História das Ciências, Faculdade de Educação da Universidade Federal da Bahia]. https://repositorio.ufba.br/ri/bitstream/ri/31999/1/Tese%20completa%20com%20ficha%20catalografica%20Cheick%20Oumar%20Doumbia%202020.pdf

Fernandes, J. A. N. (2015). Ecologia do Saber: O Ensino de Limite em um Curso de Engenharia. [Tese de doutorado em Educação em Ciências e Matemática] Universidade Federal do Pará, Belém.

Job, P., Schneider, M. (2014). Empirical positivism, an epistemological obstacle in the learning of calculus. ZDM Mathematics Education 46, pp. 635–646. https://doi.org/10.1007/s11858-014-0604-0

Schneider, M., & Job, P. (2016). Ingénieries entre recherche et formation : Élèves-professeurs en mathématiques aux prises avec des ingénieries didactiques issues de la recherche. Un dispositif de formation à portée phénoménotechnique. Éducation et didactique, 2, 91-112.

Lima, E. L. (2013). Curso de Análise, volume 1, Funções de uma variável. Projeto Euclides, IMPA.

Vergnaud, G. (1990). La théorie de Champs Conceptuels. Recherches en Didactique de Mathématiques, v.10, n.2.3, (pp. 133-170). La Pensée Sauvage.

Vergnaud, G. (2016). La prise en compte de l'enseignant dans la théorie des champs conceptuels. Formation des enseignants et étude didactique de l'enseignant, 3-19.

Published

2024-11-03

How to Cite

MONTEIRO DA SILVA BURIGATO, S. M.; ANIZ, C.; MILENA RAMOS CARVALHO , L. A discussion on the definition of the limit of a sequence. Educação Matemática Pesquisa, São Paulo, v. 26, n. 3, p. 515–533, 2024. DOI: 10.23925/1983-3156.2024v26i3p515-533. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/66336. Acesso em: 21 nov. 2024.

Issue

Section

Epistemological reference model (ERM) for teaching calculus