Educators’ specialized knowledge for geometry teaching

a proposal considering the semiocognitive approach

Authors

DOI:

https://doi.org/10.23925/1983-3156.2021v23i2p047-075

Keywords:

Teaching knowledge, Semiotic systems, Dimensional deconstruction, Geometry teaching, Pedagogue

Abstract

In addition to the knowledge required for teaching, getting to know the semiocognitive processes involved in learning geometry can be relevant for the the pedagogical work. Changing from the normal way of looking at a figure to the mathematical way of looking at it requires mobilising specific cognitive operations. By analysing the concepts of pedagogical content knowledge proposed by Shulman and the adaptations made by several other authors in the field of mathematics education, we have come to the following research question: What categories of knowledge are needed by the teacher educator to teach geometry in the early years of elementary school? We present herein a qualitative research approach through documentary analysis, aiming to propose a model of expertise for the pedagogical teacher to teach geometry in the early years of elementary school based on the existing literature. As main contributions, the article brings along the importance and need for knowledge of semiocognitive processes inherent in learning geometry and in the conduction of its teaching.

Metrics

Metrics Loading ...

Author Biographies

Selma Felisbino Hillesheim, Universidade Federal de Santa Catarina

Doutoranda no Programa de Pós-Graduação em Educação Científica e Tecnológica da Universidade Federal de Santa Catarina

Méricles Thadeu Moretti, Universidade Federal de Santa Catarina

Professor titular em exercício voluntário na Universidade Federal de Santa Catarina - UFSC. Professor permanente do Programa de Pós-Graduação em Educação Científica e Tecnológica - PPGECT/UFSC.

References

Almouloud, S. (2007). Fundamentos da Didática da Matemática. Editora da Universidade Federal de Paraná.

Ball, D. L.; D. L., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching What Makes It Special? Journal of Teacher Education, 59(5), 389-407.

Carrillo, J., Climent, N., Montes, M., Contreras-González, L., Flores-Medrano, E., Escudero Avila, D. I., Vasco Mora, D., Rojas, N., Flores, P., Aguilar-González, Á., Ribeiro, M., & Muñoz-Catalán, M. (2018). The mathematics teacher's specialised knowledge (MTSK) model. Research in Mathematics Education, 20, 236-253. https://www.tandfonline.com/doi/abs/10.1080/14794802.2018.1479981?journalCode=rrme20.

Catalán, M. C., Contreras-González, L., Carrillo, J., Rojas, N., Montes, M., & Climent, N. (2015). Conocimiento especializado del profesor de matemáticas (MTSK): un modelo analítico para el estudio del conocimiento del profesor de matemáticas. La Gaceta de la Real Sociedad Matemática Española, 18, 589-605.

Curi, E. (2004). Formação de professores polivalentes: uma análise de conhecimentos para ensinar matemática e de crenças e atitudes que interferem na constituição desses conhecimentos. [Tese de Doutorado em Educação Matemática, Universidade Católica de São Paulo]. http://www.educadores.diaadia.pr.gov.br/arquivos/File/2010/artigos_teses/MATEMATICA/Tese_curi.pdf

Duval, R. (2004). Semiosis y pensamiento humano: registros semióticos y aprendizajes intelectuales. Universidade del Valle – Instituto de Educación y Pedagogía.

Duval, R. (2005). Les conditions cognitives de l’ apprentissage de la geometrie: développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements. Annales de Didactique et de Sciences Cognitives, 10, 5-53. https://mathinfo.unistra.fr/irem/publications/adsc/

Duval, R. (2011). Ver e ensinar a Matemática de outra forma: entrar no modo matemático de pensar os registros de representações semióticas. In T. M. M. Campos (org.). (Trad. M. A. Dias). PROEM.

Duval, R. (2012a). Registros de representação semiótica e funcionamento cognitivo do pensamento. REVEMAT, 07(2), 266-297. https://doi.org/10.5007/1981-1322.2012v7n2p266.

Duval, R. (2012b). Abordagem cognitiva de problemas de geometria em termos de congruência. REVEMAT, 07(1), 118-138. https://periodicos.ufsc.br/index.php/revemat/article/view/19811322.2012v7n1p118/22382.

Duval, R. (2015). Mudanças, em curso e futuras, dos sistemas educacionais: Desafios e marcas dos anos 1960 aos anos... 2030! REVEMAT, 10(1), 1-23. https://periodicos.ufsc.br/index.php/revemat/article/view/1981-1322.2015v10n1p1/30037.

Duval, R. (2016). Questões epistemológicas e cognitivas para pensar antes de começar uma aula de matemática. REVEMAT, 11(2), 1-78. https://periodicos.ufsc.br/index.php/revemat/article/view/1981-1322.2016v11n2p1/33628

Fiorentini, D. (1995). Alguns modos de ver e conceber o ensino de matemática no Brasil. Zetetiké, 3(4), 1-37. https://doi.org/10.20396/zet.v3i4.8646877

Flores, E., & Carrillo, J. (2014). Connecting a mathematics teacher’s conceptions and specialised knowledge through her practice. In: S. Oesterle, P. Liljedahl, C. Nicol, & D. Allan. Proceedings of the Joint Meeting of PME 38 and PME-NA 36, 3, 81-88.

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008) Unpacking Pedagogical Content Knowledge: Teachers´ topic-specific knowledge of studentes. Journal for Tesearch in Mathematics Education, 39(4), 272-400.

Hillesheim, S. F., & Moretti, M. T. (2017, out., 4-7). Formação geométrica do professor pedagogo na perspectiva da semiosfera do olhar. [Conferência] VII Congresso Internacional de Ensino da Matemática, 1-12, Canoas, RS. http://www.conferencias.ulbra.br/index.php/ciem/vii/paper/viewFile/6731/3091

Hillesheim, S. F., & Moretti, M. T. (2019, jul., 14-17). A formação matemática do pedagogo nas pesquisas brasileiras: a questão da geometria. [Apresentação de comunicação]. XIII Encontro Nacional de Educação Matemática - ENEM, 1-15, Cuiabá, MT. https://sbemmatogrosso.com.br/xiiienem/anais.php.

Mendes, A. R. B. (2018). Geometria nos anos iniciais: reflexão sobre um processo de formação continuada. [Dissertação de Mestrado em Ensino e História das Ciências e da Matemática, Universidade Federal do ABC].

Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: a gramework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.

Morais, E., Jr. (2015). Por trás do currículo oficial, que geometria acontece? Um estudo sobre os saberes anunciados nas narrativas de professoras dos Anos Iniciais do Ensino Fundamental, apresentada pelo candidato. [Dissertação de Mestrado em Educação, Universidade Federal de São Carlos].

Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

Silva, M. J. F., & Lima, G. L. (2015, mayo 3-7). Conhecimentos desenvolvidos em um curso de licenciatura em matemática na modalidade a distância. [Paper presentation]. XIV Conferência Interamericana de Educación Matemática – CIAEM. Tuxtla Gutiérrez, Chiapas, México. http://xiv.ciaem-iacme.org/index.php/xiv_ciaem/xiv_ciaem/paper/viewFile/138/95.

Published

2021-09-01

How to Cite

HILLESHEIM, S. F.; MORETTI, M. T. Educators’ specialized knowledge for geometry teaching: a proposal considering the semiocognitive approach. Educação Matemática Pesquisa, São Paulo, v. 23, n. 2, p. 047–075, 2021. DOI: 10.23925/1983-3156.2021v23i2p047-075. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/53713. Acesso em: 22 nov. 2024.