The transition from arithmetic to algebraic in mathematics teaching at the Collège
Part two: Curricular perspectives: the notion of modeling
DOI:
https://doi.org/10.23925/1983-3156.2023v25i1p556-596Keywords:
Curricular reform, Arithmetic, Algebra, Didactic transposition, Mathematical modelingAbstract
The objective of the article is to discuss the epistemological and didactic dimensions of the curriculum reforms carried out in the 1960s. Among them, the Chevènement reform that aimed to rescue the arithmetic to the detriment of the algebraic. This look at the numerical was seen as something destabilizing of the curriculum in the French education system in the late 1960s. This reform understood the numerical as something practical and coming from reality, that did not need such abstract ideas, as algebra demanded. The Chevènement reform relegates the algebraic aspects in second place but does not exclude them; the use of letters is seen as a preceding generalization of the studies of numerical calculations. The problems posed in the teaching of arithmetic and algebra in the French education system are revealed, they involved the process of didactic transposition established in the official college program. The didactic transposition, which modifies the operation of the objects of knowledge, gives a certain specificity to the official program that the prodigal school proposes to the student. This official program engenders in the student a personal program that, as it is in the official program, will enjoy limited adequacy as the said object of knowledge, which will no longer be a pure didactic stake, will only be a tool of the student's didactic-mathematical activity: for example, the factoring of an algebraic expression may no longer be the goal of his activity, becoming the means to solve a third degree equation, knowing one of its roots.
Metrics
References
Bachelard G. (1928), Essai sur la connaissance approchée, Jules Vrin, Paris, quatrième édition 1973.
Bachelard G. (1949), Le rationalisme appliqué, Presses universitaires de France, Paris, quatrième édition 1970.
Chevallard Y. (1984a), «Le passage de l'arithmétique à l'algébrique dans l'enseignement des mathématiques au colégio - première partie: l'évolution de la trans position didactique», Petit x, nO 5, pp. 51-94.
Chevallard Y. (1985b), La transposition didactique - Du savoir savant au savoir enseigné, La pensée sauvage, Grenoble.
Chevallard Y. (1986), «Les programmes et la transposition didactique», Bulletin de l'APMEP, nº 352 (février 1986), pp. 32-50.
Chevallard Y. et Mercier A. (1987), Sur laformation historique du temps didactique, Editions de l'IREM d'Aix-Marseille, Marseille.
Choquet G (1964), L'enseignement de la géométrie, Hermann, Paris. DIEUDONNE J. (1964), Algèbre linéaire et géométrie élémentaire, Hermann, Paris.
Douady R. (1986), «Jeux de cadres et dialectique outil-objet», Recherches en
didactique des mathématiques, Vol. 7-2, pp. 5-31.
Ekeland I. (1984), Le calcul, l'imprévu, Editions du Seuil.
Febvre L. (1942), Le problème de l'incroyance au 16ème siècle, Albin Michel, Paris 1968.
Fischer R. (à paraître), «The «Human Factor» in Pure and Applied Mathe matics», in M.S. Arora, A. Rogerson et F. Mina (éds) : Mathematics Education into the 21st Century.
Freud S. (1920), Essais de psychanalyse, Payot, Paris, 1976. HOUZEL C. (1985), «Géométrie algébrique», Encyclopaedia universalis, nO 8, pp. 481-488.
Langaney A. (1979), Le sexe et l'innovation, Editions du Seuil, Paris.
Lebesgue H. (1935), La mesure des grandeurs, Albert Blanchard, Paris, 1975.
Lutz R. et Goze M. (1985), «Analyse non standard», Encyclopaedia univer salis, nO 2, pp. 13-16.
Mouloud N. (1985), «Modèle», Encyclopaedia universalis, nO 12, ppA01-402.
Raymond P. (1975), L'histoire et les sciences, François Maspéro, Paris.
Reeb G. (1981), «Analyse non standard (essai de vulgarisation)>>, Bulletin de l'APMEP, nO 328 (avril 1981), pp. 259-273.
Schoenfeld A.H. (1985), Mathematical Problem Solving, Academie Press, Orlando.
Serres M. (1972), Hermès II - L'interférence, Editions de Minuit, Paris. SMITH D.E. (1925), History of mathematics, volume II, Dover, New York, 1958.
Valentin L. (1983), L'univers mécanique - Introduction à la physique et à ses méthodes, Hennann, Paris.
Vaulezard (1630), La nouvelle algèbre de M. Viète, Fayard, Paris, 1986.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).