Enseñanza de álgebra para personas con discapacidad visual: contribuciones de las situaciones desencadenantes de aprendizaje

contribuciones de las situaciones desencadenantes de aprendizaje

Autores/as

DOI:

https://doi.org/10.23925/1983-3156.2024v26i1p283-312

Palabras clave:

Enseñanza de álgebra, Discapacidad visual, Teoría histórico-cultural, Actividad orientadora de enseñanza, Situaciones desencadenantes de aprendizaje

Resumen

Considerando la necesidad de combinar teoría y práctica en la planificación de situaciones de enseñanza para estudiantes con discapacidad visual, esta investigación adoptó los supuestos de la Teoría Histórico-Cultural y de la Teoría de la Actividad, y se basó en la Actividad Orientadora de Enseñanza. Se desarrollaron situaciones desencadenantes del aprendizaje de conocimientos algebraicos y se analizaron intervenciones realizadas con un estudiante de 7º grado y otro de 8º grado, ambos con discapacidad visual y asistiendo al aula de recursos multifuncionales de una escuela pública de la red estatal. El objetivo de este artículo es reconocer la apropiación de conocimientos algebraicos por parte de personas con discapacidad visual a partir de situaciones desencadenantes de aprendizaje. Para ello, se organizaron los datos en dos categorías: manifestaciones de nexos conceptuales y manifestaciones del pensamiento y del lenguaje. Estas dos categorías permiten comprender el fenómeno de "apropiación de los conocimientos algebraicos" a partir de las situaciones presentadas a los estudiantes. Al final del estudio, se destaca que las situaciones elaboradas permitieron la mediación simbólica e instrumental, posibilitando la apropiación de los nexos conceptuales del álgebra (variación, campo de variación y fluidez) y de algunos contenidos escolares seleccionados (reconocimiento de incógnitas, dependencia de variables y operaciones con monomios y polinomios). Cabe resaltar que las situaciones desencadenantes propuestas lograron estos resultados a través de un proceso de organización de la enseñanza que consideró las condiciones para la accesibilidad de los estudiantes atendidos.

Métricas

Cargando métricas ...

Biografía del autor/a

Natalia Mota Oliveira, UTFPR

Licenciatura em Matemática

Maria Lucia Panossian, Universidade Tecnológica Federal do Paraná

Doutorado em Educação Matemática

Citas

Alves, B. A. S. (2016). A álgebra na perspectiva histórico-cultural: uma proposta de ensino para o trabalho com equações de 1º grau. [Dissertação de Mestrado em Educação. Universidade Federal de Uberlândia]. https://repositorio.ufu.br/handle/123456789/18423.

Brasil (1988). Constituição da República Federativa do Brasil de 1988. http://www.planalto.gov.br/ccivil_03/constituicao/constituicaocompilado.htm.

Brasil (1996). Lei de Diretrizes e Bases. Lei nº 9.394, de 20 de dezembro de 1996. http://www.planalto.gov.br/ccivil_03/LEIS/L9394.htm.

Brasil (2001) Resolução CNE/CEB nº 2, de 11 de setembro de 2001.: http://portal.mec.gov.br/cne/arquivos/pdf/CEB0201.pdf.

Brasil (2004) Decreto nº 5.296 de 2 de dezembro de 2004. http://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2004/Decreto/D5296.htm.

Brasil (2015) Estatuto da pessoa com deficiência. Lei nº 13.146, de 6 de julho de 2015. http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2015/lei/l13146.htm.

Caraça, B. J. (1951) Conceitos Fundamentais da Matemática. Editora Livraria Sá da Costa.

Cedro, W. L. (2004). O espaço de aprendizagem e a atividade de ensino: O Clube de Matemática. [Dissertação de Mestrado em Educação. Universidade de São Paulo]. https://www.teses.usp.br/teses/disponiveis/48/48134/tde-21062005-104453/pt-br.php.

Dias, C. E. (2018). Matemática para cegos: uma possibilidade de ensino de polinômios [Trabalho de Conclusão de Curso de Licenciatura em Matemática, Universidade Tecnológica Federal do Paraná]. https://repositorio.utfpr.edu.br/jspui/handle/1/9030.

Fiorentini, D., Miorim, M. A. & Miguel, A. (1993). Contribuição para um repensar... a Educação Algébrica Elementar. Revista Pro-Posições, 4 (1), p.79-91.

Florio, L. H. (2016). Entendendo o quê é ACUIDADE VISUAL. Site Stargardt. http://www.stargardt.com.br/entendendo-o-que-e-acuidade-visual/.

Hilsdorf, C. R. R. (2014). Educação matemática em escolas inclusivas: a sala de recursos em destaque. [Dissertação de mestrado. Universidade Estadual Paulista]. https://repositorio.unesp.br/bitstream/handle/11449/123984/000829707.pdf.

Kaleff, A. M. M. R., Oliveira, M. F. De., Rosa, F. M. C. & Rodrigues, V. L. (2013). Vendo com as mãos: em busca da inclusão do aluno com deficiência visual nas aulas de Matemática. Caderno Dá Licença. 8 (s/n). http://dalicenca.uff.br/projetos/caderno/.

Leontiev, A. N. (2017). Uma contribuição à teoria do desenvolvimento da psique infantil. In: L. S. Vygotsky; A. R. Luria & A. N. Leontiev. Linguagem, desenvolvimento e aprendizagem. (pp. 59 - 84). 16. ed. Editora Ícone.

Lucion, P. (2015). A organização do ensino de matemática no contexto da inclusão. [Dissertação de Mestrado em Educação. Universidade Federal de Santa Maria]. http://repositorio.ufsm.br/handle/1/7234.

Luria, A. R. (2017). O desenvolvimento da escrita na criança. In: L. S. Vygotsky; A. R. Luria & A. N. Leontiev. Linguagem, desenvolvimento e aprendizagem. (pp. 143 - 190). 16. ed. Editora Ícone.

Ministério da Educação (MEC). (2001). Diretrizes Nacionais para a Educação Especial na Educação Básica.

Ministério da Educação (MEC). (2017). Base Nacional Comum Curricular. http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdf

Ministério da Educação (MEC). (2020). Política Nacional de Educação Especial: Equitativa, Inclusiva e com Aprendizado ao Longo da Vida. Secretaria de Modalidades Especializadas de Educação.

Moura, M. O. (2006). Saberes pedagógicos e saberes específicos: desafios para o ensino de matemática. Anais do XII ENDIPE.

Moura, M. O. (2015). Números racionais - Arquivo. https://slideplayer.com.br/slide/10437712/.

Moura, M. O. De & Lanner De Moura, A. R. (1998). Matemática na educação infantil: conhecer, (re)criar - um modo de lidar com as dimensões do mundo. Editora SECEL.

Moura, M. O. de, Araujo, E. S., Souza, F. D. de, Panossian, M. L. & Moretti, V. D. (2016). A Atividade Orientadora de Ensino como Unidade entre Ensino e Aprendizagem. In: M. O. de Moura (org.). A atividade pedagógica na teoria histórico-cultural. (pp. 93 - 126). 2. ed. Editora Autores Associados.

Oliveira, N. M. (2020). Situações desencadeadoras de aprendizagem no ensino de álgebra para estudantes deficientes visuais. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Universidade Tecnológica Federal do Paraná, Curitiba, 2020.

Pacheco, K. M. De B. & Alves, V. L. R. (2007). A história da deficiência, da marginalização à inclusão social: uma mudança de paradigma. Revista Acta Fisiatr. 41(4): 242-248. DOI: 10.11606/issn.2317-0190.v14i4a102875.

Padilha, P. R. (2001). Planejamento Dialógico: Como construir o projeto político pedagógico da escola. Editora Cortez.

Panossian, M. L. (2008). Manifestações do pensamento e da linguagem algébrica de estudantes: indicadores para a organização do ensino. [Dissertação de Mestrado em Educação. Universidade de São Paulo]. https://teses.usp.br/teses/disponiveis/48/48134/tde-23012009-143154/pt-br.php.

Panossian, M. L., Moretti, V. D. & Souza, F. D. de. (2017). Relações entre movimento histórico e lógico de um conceito, desenvolvimento do pensamento teórico e conteúdo escolar. In: M. O. de Moura (org.). Educação escolar e pesquisa na teoria histórico-cultural. Editora: Loyola.

Panossian, M. L., Sousa, M. C. & Moura, M. O. (2017). Nexos conceituais do conhecimento algébrico a partir do movimento histórico e lógico. In: V. D. Moretti & W. L. Cedro. Educação matemática e a teoria histórico-cultural: um olhar sobre as pesquisas. (pp. 125 - 160). Editora Mercado de Letras.

Secretaria do Estado da Educação do Paraná. (2018). Referencial Curricular do Paraná: princípios, direitos e orientações. SEED/PR. https://professor.escoladigital.pr.gov.br/crep

Sousa, M. C., Panossian, M. L. & Cedro, W. L. (2014). Do movimento lógico histórico à organização do ensino: o percurso dos conceitos algébricos. Editora Mercado de Letras.

Unesco (1994). Declaração de Salamanca: Sobre Princípios, Políticas e Práticas na Área das Necessidades Educativas Especiais. http://portal.mec.gov.br/seesp/arquivos/pdf/salamanca.pdf.

Unesco (1998). Declaração Mundial sobre Educação para Todos. https://www.unicef.org/brazil/declaracao-mundial-sobre-educacao-para-todos-conferencia-de-jomtien-1990.

Usiskin, Z. (1995). Concepções sobre a álgebra da escola média e utilização das variáveis. In: Coxford, A. F. Shulte, A. P. As idéias da álgebra. (pp. 9 – 22) Editora Atual.

Vygotsky, L. S. (1997). Fundamentos de defectología: obras completas. Editorial Pueblo y Educación.

Vygotsky, L. S. (2017). Aprendizagem e desenvolvimento intelectual na idade escolar. In: L. S. Vygotsky; A. R. Luria & A. N. Leontiev. Linguagem, desenvolvimento e aprendizagem. (pp. 103 - 118). 16. ed. Editora Ícone.

Publicado

2024-04-30

Cómo citar

OLIVEIRA, N. M. .; PANOSSIAN, M. L. . Enseñanza de álgebra para personas con discapacidad visual: contribuciones de las situaciones desencadenantes de aprendizaje: contribuciones de las situaciones desencadenantes de aprendizaje. Educação Matemática Pesquisa, São Paulo, v. 26, n. 1, p. 283–312, 2024. DOI: 10.23925/1983-3156.2024v26i1p283-312. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/56743. Acesso em: 22 nov. 2024.