The use of figures related to the complex integral and Cauchy’s integral theorem in complex analysis textbooks

Auteurs

DOI :

https://doi.org/10.23925/1983-3156.2024v26i3p303-326

Mots-clés :

Modèle de référence épistémologique, Analyse du contenu des manuels, Figures, Transposition didactique, Analyse complexe

Résumé

Pour répondre à une question relative aux similitudes et aux différences entre les travaux mathématiques originaux en analyse complexe et les manuels contemporains en ce qui concerne l’utilisation de figures (conçues comme des dessins en deux dimensions) pour aborder les concepts de cette branche des mathématiques, nous avons analysé dans cette étude la façon dont les quatre principaux manuels, qui sont référencés dans les guides de l’enseignant de toutes les universités publiques espagnoles qui proposent un diplôme en mathématiques, structurent le concept d’intégrale complexe et la preuve du théorème intégral de Cauchy. Pour mener à bien notre analyse, nous avons récupéré un modèle de référence épistémologique qui décrit la manière dont les sujets historiques ont utilisé les chiffres pour développer l’analyse complexe entre le premier quart du 19e siècle et la première moite du 20e siècle. L’étude montre que les quatre manuels universitaires structurent ces concepts de manière à les mettre en relation avec les formes les plus contemporaines auxquelles ils ont été associés dans leur développement historique. Bien que nous ne soyons pas opposés à ce que le contenu des manuels soit structure de cette manière, nous expliquerons comment le modèle de référence épistémologique peut servir d’alternative épistémologique pour l’élaboration d’un matériel didactique qui tienne compte du développement historique de l’analyse complexe.

Métriques

Chargements des métriques ...

Bibliographies de l'auteur

José Gerardo Piña-Aguirre, Cinvestav

MSc in Mathematics Education

Antonio M. Oller-Marcén, Departamento de Matemáticas – IUMA, Universidad de Zaragoza

PhD in Mathematics Education

Rosa María Farfán Márquez, Centro de investigación y de estudios avanzados (Cinvestav)

PhD in Mathematics Education

Références

Ahlfors, L. (1979). Complex Analysis. An introduction to the theory of analytic functions of one complex variable. McGraw-Hill.

Bak, J., & Popvassilev, S. (2017). The Evolution of Cauchy’s Closed Curve Theorem and Newman’s Simple Proof. The American Mathematical Monthly, 124(3), 217–231. https://doi.org/10.4169/amer.math.monthly.124.3.217

Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI bulletin, 58(58), 51–65.

Bottazzini, U., & Gray, J. (2013). Hidden Harmony –Geometric Fantasies. The Rise of Complex Function Theory. Springer.

Cantoral, R. (2020). Socioepistemology in mathematics education. In Encyclopedia of mathematics education (pp. 790–797). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_100041

Cantoral, R., & Farfán, R. (2004). La sensibilité à la contradiction: logarithmes de nombres négatifs et origine de la variable complexe. Recherches en Didactique des mathématiques, 24(2-3), 137–168.

Cauchy, A. (1825). Mémoire sur les intégrales définies, prises entre des limites imaginaires. Bure frères.

Clark, C.M. (2019). History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future. In U.T. Jankvist, M. Van den Heuvel-Panhuizen, & M. Veldhuis, (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 29–55). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

Conway, J. (1973). Functions of one complex variable. Springer.

D’Azevedo-Breda, A., & Dos Santos, J. (2021). Learning complex functions with GeoGebra. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(177), 1262– 1276. https://doi.org/10.18257/raccefyn.1504

Danenhower, P. (2000). Teaching and learning complex analysis at two British Columbia Universities [Doctoral dissertation, Simon Fraser University]. https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape3/PQDD_0008/NQ61636.pdf

Dittman, M., Soto-Johnson, H., Dickinson, S., & Harr, T. (2016). Game building with complex-valued functions. Primus, 27(8-9), 869–879. https://doi.org/10.1080/10511970.2016.1234527

Dixon, J. D. (1971). A brief proof of Cauchy’s integral theorem. Proceedings of the American Mathematical Society, 29(3), 625–626.

Fan, L. (2013). Textbook research as scientific research: towards a common ground on issues and methods of research on mathematics textbooks. ZDM Mathematics Education, 45, 765–777. https://doi.org/10.1007/s11858-013-0530-6

Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in mathematics education: development status and directions. ZDM Mathematics Education, 45, 633–646. https://doi.org/10.1007/s11858-013-0539-x

Garcia, S., & Ross, W. (2017). Approaching Cauchy’s Theorem. PRIMUS, 27(8-9), 758–765. https://doi.org/10.1080/10511970.2016.1234525

Gascón, J. (2014). Los modelos epistemológicos de referencia como instrumentos de emancipación de la didáctica y la historia de las matemáticas. Educación Matemática, 25 años, 99–123.

Gómez, B. (2011). El análisis de manuales y la identificación de problemas de investigación en Didáctica de las Matemáticas. PNA, 5(2), 49–65. https://doi.org/10.30827/pna.v5i2.6157

Goursat, E. (1884). Démonstration du théoréme de Cauchy: Extrait d’une lettre adressée à M. Hermite. Acta Mathematica, 4, 197–200. https://doi.org/10.1007/BF02418419

Grattan-Guinness, I. (2004). History or Heritage? An Important Disctinction in Mathematicsa and for Mathematics Education. The American Mathematical Monthly, 111 (1), 1–12. https://doi.org/10.1080/00029890.2004.11920041

Gray, J. (2000). Goursat, Pringsheim, Walsh, and the Cauchy integral theorem. The Mathematical Intelligencer, 22(4), 60–66. https://doi.org/10.1007/BF03026773

Hanke, E. (2022). Aspects and images of complex path integrals [Doctoral thesis, University of Bremen]. https://doi.org/10.26092/elib/1964

Larivière, G. (2014). On Cauchy’s Rigorization of Complex Analysis [Master’s thesis, Simon Fraser University]. https://summit.sfu.ca/item/17300

Manning, K. (1975). The emergence of the Weierstrassian approach to complex analysis. Archive for History of Exact Sciences, 14(4), 297–383. https://doi.org/10.1007/BF00327297

Marsden, J., & Hoffman, M. (1999). Basic complex analysis. W. H. Freeman.

Nemirovsky, R., Rasmussen, C., Sweeney, G., & Wawro, M. (2012). When the Classroom Floor Becomes the Complex Plane: Addition and Multiplication as Ways of Bodily Navigation. Journal of the Learning Sciences, 21(2), 287–323. https://doi.org/10.1080/10508406.2011.611445

Oehrtman, M., Soto-Johnson, H. & Hancock, B. (2019). Experts’ Construction of Mathematical Meaning for Derivatives and Integrals of Complex-Valued Functions. Int. J. Res. Undergrad. Math. Ed., 5(3), 394–423. https://doi.org/10.1007/s40753-019-00092-7

Panaoura, A., Elia, I., Gagatsis, A., & Giatilis, G.P. (2006). Geometric and algebraic approaches in the concept of complex numbers. International Journal of Mathematical Education in Science and Technology, 37(6), 681–706. https://doi.org/10.1080/00207390600712281

Piña-Aguirre, J. G., & Farfán, R. (2022). Sobre los procesos de demostración y el contexto de producción de la memoria Sur les Intégrales Définies de Augustin-Louis Cauchy. Revista De História Da Educação Matemática, 8, 1–22.

Piña-Aguirre, J. G., & Farfán, R. (2023). What enabled the production of mathematical knowledge in complex analysis?. International Electronic Journal of Mathematics Education, 18(2), em0734. https://doi.org/10.29333/iejme/12996

Ponce, J.C. (2019). The use of phase portraits to visualize and investigate iso-lated singular points of complex functions. International Journal of Mathematical Educationin Science and Technology, 50(7), 999–1010. https://doi.org/10.1080/0020739X.2019.1656829

Pringsheim, A. (1903). Der Cauchy-Goursat’sche Integralsatz und seine Übertragung auf reelle Kurven-lntegrale. Sitzungsberichte der math-phys. Classe der Königliche Akademie der Wissenschaften zu München, 33, 673–682.

Rudin, W. (1987). Real and complex analysis. McGraw-Hill.

Schubring, G., & Fan, L. (2018). Recent advances in mathematics textbook research and development: an overview. ZDM Mathematics Education, 50, 765–771. https://doi.org/10.1007/s11858-018-0979-4

Scott, J. (1990). A matter of record, documentary sources in social research. Polity Press.

Smithies, F. (1997). Cauchy and the creation of complex function theory. Cambridge University press. https://doi.org/10.1017/CBO9780511551697

Soto-Johnson, H., & Hancock, B. (2019). Research to Practice: Developing the Amplitwist Concept. PRIMUS, 29(5), 421–440. https://doi.org/10.1080/10511970.2018.1477889

Soto-Johnson, H., & Oehrtman, M. (2022). Undergraduates’ Exploration of contour integration: What is accumulated? The Journal of Mathematical Behavior, 66, 100963. https://doi.org/10.1016/j.jmathb.2022.100963

Spivak, M. (1994). Calculus. Publish or Perish.

Troup, J., Soto, H. & Kemp, A. (2023). Developing Geometric Reasoning of the Relationship of the Cauchy Riemann Equations and Differentiation. Int. J. Res. Undergrad. Math. Ed. Advanced online publication. https://doi.org/10.1007/s40753-023-00223-1

Van Dormolen, J. (1986). Textual analysis. In B. Christiansen, A. G. Howson & M. Otte (Eds.), Perspectives on Mathematics Education (pp. 141–171). Reidel. https://doi.org/10.1007/978-94-009-4504-3_4

Zill, D., & Shanaha, P. (2013). A first course in complex analysis with applications. Jones and Bartlett Publishers

Téléchargements

Publiée

2024-11-03

Comment citer

PIÑA-AGUIRRE, J. G.; OLLER-MARCÉN, A. M.; FARFÁN MÁRQUEZ, R. M. The use of figures related to the complex integral and Cauchy’s integral theorem in complex analysis textbooks. Educação Matemática Pesquisa, São Paulo, v. 26, n. 3, p. 303–326, 2024. DOI: 10.23925/1983-3156.2024v26i3p303-326. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/66938. Acesso em: 21 nov. 2024.

Numéro

Rubrique

Modèle de référence épistémologique (MRE) pour l'enseignement du calcul infinité